DOI QR코드

DOI QR Code

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization

퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화

  • Published : 2007.12.25

Abstract

In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

본 연구에서는 퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기(Polynomial Network Pattern Classifier; PNC)를 설계하고 Particle Swarm Optimization 알고리즘을 이용하여 PNC 파라미터, 즉, 학습률, 모멘텀 계수, FCM 클러스터링의 퍼지화 계수(fuzzification Coefficient)를 최적화한다. 제안된 PNC 구조는 FCM 클러스터링에 기반한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. PNC 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 제안된 PNC는 다항식 기반 구조의 퍼지 추론 특성으로 인해 출력 공간상에 비선형 판별 함수(nonlinear discernment function)가 생성되어 분류기로서의 성능을 높인다.

Keywords

References

  1. W. Pedrycz, 'Conditional fuzzy clustering in the design of radial basis function neural networks,' IEEE Trans. Neural Networks, vol. 9, pp. 601-612, July 1998 https://doi.org/10.1109/72.701174
  2. M.J. Er, S.Q. Wu, J.W. Lu, H.L. Toh, 'Face recognition with radical basis function (RBF) neural networks,' IEEE Trans. Neural Networks, vol. 13, No.3, pp. 697-710, 2002 https://doi.org/10.1109/TNN.2002.1000134
  3. A. Aiyer, K. Pyun, Y.Z. Huang, D.B. O'Brien,R.M. Gray, 'Lloyd clustering of Gauss mixture models for image compression and classification,' Signal Processing: Image Communication, vol. 20, pp. 459-485, 2005 https://doi.org/10.1016/j.image.2005.03.003
  4. S.-K. Oh, W. Pderycz, B.-J. Park, 'Self-organizing neurofuzzy networks in modeling software data,' Fuzzy Sets and Systems, vol. 145, pp. 165-181, 2004 https://doi.org/10.1016/j.fss.2003.10.009
  5. J. Kennedy and R. Eberhart, 'Particle swarm op- timization,' Proc. IEEE Int. Conf. Neural Networks, vol. 4, pp. 1942-1948, 1995 https://doi.org/10.1109/ICNN.1995.488968
  6. J. Kennedy, 'The particle swarm: Social adaptation of knowledge,' Proc. IEEE Int. Conf. Evolutionary Comput., pp. 303-308, 1997
  7. J. R. Quinlan, 'Improved use of continuous attributes in C4.5,' J. Artif. Intell. Res., vol. 4, pp. 77 - 90, 1996
  8. C. Z. Janikow and M. Faifer, 'Fuzzy partitioning with FID3.l,' in Proc. IEEE 18th Int. Conf. North American Fuzzy Information Processing Soc., pp. 467-471, 1999
  9. F. Klawonn, D. Nauck, and R. Kruse, 'Generating rules from data by fuzzy and neuro-fuzzy methods,' in Proc. Fuzzy-Neuro-Systeme, pp. 223-230, 1995
  10. F. J. de Souza, M. M. B. R. Vellasco, and M. A. C. Pacheco, 'Load forecasting with the hierarchical neuro-fuzzy binary space partitioning model,' Int. J. Comput. Svst. Signals, vol. 3, no. 2, pp. 1 - 15, 2002
  11. F. J. de Souza, M. M. B. R. Vellasco, and M. A. C. Pacheco, 'Hierarchical neuro-fuzzy quadtree models,' Fuzzy Sets Syst., vol. 130, No.2, pp.189 - 205, 2002 https://doi.org/10.1016/S0165-0114(01)00145-2
  12. L.B. Goncalves, M.M.B.R. Vellasco, M.A.C. Pacheco and F.J. de Souza, 'Inverted hierarchical neuro-fuzzy BSP system: A novel neuro-fuzzy model for pattern classification and rule extraction in databases,' IEEE Transactions on Systems, Man & Cybernetics, Part C, Vol. 26, No.2, 2005

Cited by

  1. Swarm Control of Distributed Autonomous Robot System based on Artificial Immune System using PSO vol.18, pp.5, 2012, https://doi.org/10.5302/J.ICROS.2012.18.5.465
  2. Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.087