Production of Spirulina Extract by Enzymatic Hydrolysis

효소 가수분해 방법을 이용한 스피루리나 추출물의 제조

  • In, Man-Jin (Department of Human Nutrition and Food Science, Chungwoon University) ;
  • Gwon, Su-Yeon (Department of Human Nutrition and Food Science, Chungwoon University) ;
  • Chae, Hee-Jeong (Department of Food and Biotechnology, Hoseo University) ;
  • Kim, Dong-Chung (Institute of Basic Science, Sungkyunkwan University) ;
  • Kim, Dong-Ho (FNBio Co., Ltd.)
  • Published : 2007.12.31

Abstract

An efficient production method of spirulina extract was developed by enzymatic treatment using cell lytic and proteolytic enzymes. The suitable dosage of Tunicase, a cell lytic enzyme, was found to be 2.0% (w/w). Proteolytic enzymes were screened to obtain high solid recovery and spirulina extraction (SE) index, which indicates nucleic acid-related substances content. Among the seven tested proteases, Esperase was selected and optimal dosage of this enzyme was 2.0% (w/w). The solid recovery and SE index of simultaneous treatment and co-treatment using optimal dosages of Tunicase and Esperase were greatly similar, respectively. However, co-treatment had the effect of shortening total hydrolysis time. The SE index and solid recovery of co-treatment were significantly enhanced by 75% $(11.4{\rightarrow}20.0)$ and 45% $(45.2%{\rightarrow}65.3%)$, respectively, than those of the non-treated extracts.

세포벽 분해 효소와 단백질 분해 효소를 이용하여 스피루리나 추출물을 효율적으로 생산할 수 있는 방법을 조사하였다. 세포벽 분해 효소인 Tunicase의 사용 농도는 2%가 적당하였다. 고형분 회수율과 핵산 관련 성분의 함량을 나타내는 spiruina extraction(SE) index를 기준으로 상업용 단백질 분해 효소를 선별하였다. 일곱 종류의 효소를 조사한 결과, Esperase가 가장 우수하였으며, 최적 사용량은 2%이었다. Tunicase와 Esperase를 순차전으로 반응시키거나 동시에 반응시켜도 고형분 회수율과 SE index는 매우 유사하였으며 동시에 사용하는 것이 반응 시간을 단축시킬 수 있었다. 두 효소를 동시에 반응시키면 단순 열수 추출보다 고형분 회수율은 약 45%$(45.2%{\rightarrow}65.3%)$, SE index는 약 75%$(11.4{\rightarrow}20.0)$ 증가하였다.

Keywords

References

  1. Kay, R. A. (1991) Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30, 555-573 https://doi.org/10.1080/10408399109527556
  2. Ciferri, O. (1983) Spirulina, the edible microorganisms. Microbiol. Rev. 47, 551-578
  3. Annapurna, V. V., Deosthale, Y. G.. and Bamji, M. S. (1991) Spirulina as a source of vitamin A. Plant Foods Hum. Nutr. 41, 125-134 https://doi.org/10.1007/BF02194081
  4. Tokusoglu, O. and Unal, M. K. (2003) Biomass nutrition profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food Sci. 68, 1144-1148 https://doi.org/10.1111/j.1365-2621.2003.tb09615.x
  5. Kim, W. Y. and Park J. Y. (2003) The effect of spirulina on lipid metabolism, antioxidant capacity and immune function in Korean elderlies. Korean J. Nutr. 36, 287-297
  6. Nakaya, N., Homma, Y. and Goto, Y. (1988) Chloresterol lowering effect of spirulina. Nutr. Rep. Int. 37, 1329-1337
  7. Hayashi, O., Hirahashi, T., Katoh, T., Miyajima, H., Hirano, T. and Okuwaki, Y. (1998) Class specific influence of dietary Spirulina platensis on antibody production in mice. J. Nutr. Sci. Vitaminol. 44, 841-851 https://doi.org/10.3177/jnsv.44.841
  8. Sharma, M. K., Sharma, A., Kumar, A. and Kumar, M. (2007) Evaluation of protective efficacy of Spirulina fusiformis against mercury induced nephrotoxicity in Swiss albino mice. Food Chem. Toxicol. 45, 879-887 https://doi.org/10.1016/j.fct.2006.11.009
  9. Hernandez-Corona, A., Nieves, I., Meckes, M., Chamorro, G.. and Barron, B. L. (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res. 56, 279-285 https://doi.org/10.1016/S0166-3542(02)00132-8
  10. Hirahashi, T., Matsumoto, M., Hazeki, K., Saeki, Y., Ui, M. and Seya, T. (2002) Activation of the human innate immune system by spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int. Immunopharmacol. 2, 423-434 https://doi.org/10.1016/S1567-5769(01)00166-7
  11. Ozdemir, G., Karabay, N. U., Dalay, M. C. and Pazarbasi, B. (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother. Res. 18, 754-757 https://doi.org/10.1002/ptr.1541
  12. Wu, L. -C., Annine Ho, J. -A., Shief, M. -C. and Lu, I. -W. (2005) Antioxidant and antiproliferative activities of spirulina and chlorella water extract. J. Agric. Food Chem. 53, 4207- 4212 https://doi.org/10.1021/jf0479517
  13. Kim, H. -S., Kim, C. -H., Kim, J. -H., Kwom, M. -C., Cho, J. -H., Gwak, H. -G., Hwang, B. -Y., Kim, J. -C. and Lee, H. Y. (2006) Comparison of anticancer activities from the culture and extraction conditions of the Spirulina platensis. Kor. J. Microbiol. Biotechnol. 34, 143-149
  14. In, M. -J., Jang, J. E. and Kim, D. H. (2007) Enhancing extraction yield of chlorella extract by enzyme treatment. J. Appl. Biol. Chem. 50, 132-135
  15. Piñero Estrada, J. E., Bermejo Bescós, P. and Villar del Fresno, A. M. (2001) Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco 56, 497-500 https://doi.org/10.1016/S0014-827X(01)01084-9
  16. Kim, D. C., Chae, H. J., Oh, N. -S. and In, M. -J. (2001) Effect of cell lytic enzyme on the production of yeast extract. J. Korean Soc. Appl. Biol. Chem. 44, 273-275
  17. Chae, H. J., Joo, H. and In, M. -J. (2001) Utilization of brewer's yeast cells for the production of food-grade yeast extract. Part 1: effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresource Technol. 76, 253-258 https://doi.org/10.1016/S0960-8524(00)00102-4
  18. In, M. -J., Chae, H. J. and Oh, N. -S. (2002) Process development for heme-enriched peptide by enzymatic hydrolysis of hemoglobin. Bioresource Technol. 84, 63-68 https://doi.org/10.1016/S0960-8524(02)00009-3
  19. Chae, H. J., In, M. -J. and Kim, M. H. (1997) Optimization of enzymatic treatment for the production of hydrolyzed vegetable protein. Korean J. Food Sci. Technol. 29, 1125-1130