DOI QR코드

DOI QR Code

Monitoring for the Resistance of Botrytis cinerea Causing Gingseng Gray Mold to Procymidone and Its Multiple resistance with the Mixture of Carbendazim/Diethofencarb

인삼 잿빛곰팡이병균의 procymidone에 대한 감수성 변화와 carbendazim/diethofencarb 합제와의 다중 저항성

  • Lee, Seon-Wook (Institute of Youngill Chemical) ;
  • Kim, Joo-Hyung (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Min, Ji-Young (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Bae, Young-Seok (Ginseng & Medicinal Plants Research Institute, National Institute of Crop Science(NICS), RDA) ;
  • Kim, Heung-Tae (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
  • 이선욱 ((주)영일케미컬연구소) ;
  • 김주형 (충북대학교 농업생명환경대학 응용생명환경학부 식물의학) ;
  • 민지영 (충북대학교 농업생명환경대학 응용생명환경학부 식물의학) ;
  • 배영석 (작물과학원 인삼약초연구소 인삼과) ;
  • 김흥태 (충북대학교 농업생명환경대학 응용생명환경학부 식물의학)
  • Published : 2007.12.01

Abstract

Effects of fungicides on the mycelial growth of Botrytis cinerea isolated from ginseng leaves were investigated by an agar dilution method. By using a agar dilution method, it was investigated the effect of fungicides, procymidone, carbendazim and the mixture with both of carbendazim and diethofencarb, on the mycelial growth of Botrytis cinerea isolates, which were isolated from infected leaves of ginseng in 2005 and 2006. With MIC (minimum inhibiton concentration) of procymidone against B. cinerea, pathogens were divided into two groups. While one showed the low MIC between 0.8 and $4.0{\mu}g/ml$, the other showed higher MIC above $20{\mu}g/ml$. In terms of the inhibition ratio of mycelial growth at the indicated concentration of procymidone, isolates of B. cinerea were divided into three groups; the sensitive, the intermediate resistant, and the resistant group. Each group was differentiated by $EC_{50}$; the sensitive group showed below $2.0{\mu}g/ml$, the intermediate resistant group between 2.0 to $5.0{\mu}g/ml$, and resistant group above $5.0{\mu}g/ml$. Compared with the ratio of resistant isolates of B. cinerea in 2005, the ratio in 2006 increased from 19.3% to 27.5%. Furthermore, the average $EC_{50}$ value of them increased from $10.0{\mu}g/ml$ in 2005 to $237.3{\mu}g/ml$ in 2006. The ratio of isolates showing the multiple resistance between procymidone and carbendazim was 40.2%, whereas the ratio was 4.0% showing the multiple resistance in the mixture.

인삼의 잎에서 발생한 잿빛곰팡이병의 병반으로부터 병원균인 Botrytis cinerea의 224개 균주를 단포자 분리하여 실험에 사용하였다. 분리한 B. cinerea는 한천희석법을 사용하여 procymidone, carbendazim, carbendazim과 diethofencarb 합제의 균사생장 억제 효과를 $EC_{50}$(균사생장을 50% 억제하는 농도)과 MIC(균사생장을 100% 억제하는 최소농도) 값을 조사하였다. Procymidone에 대한 MIC값을 가지고서 병원균을 분류하면 0.8과 $4.0{\mu}g/ml$ 사이에 속하는 그룹과 $20{\mu}g/ml$ 이상인 그룹으로 크게 분류할 수 있었다. 2005년에 분리한 균주들은 지역별로 procymidone에 대한 감수성의 변화가 매우 다양하게 나타났다. 실험에 사용한 procymidone의 각각의 농도에 대한 균사 생장 억제 양상을 가지고 병원균을 각각 감수성($EC_{50}$ 값이 $2.0{\mu}g/ml$ 이하), 중도저항성($EC_{50}$ 값이 2.0과 $5.0{\mu}g/ml$ 사이), 저항성($EC_{50}$ 값이 $5.0{\mu}g/ml$ 이상) 등의 3개의 그룹으로 분류할 수 있었다. 이 기준으로 분류하였을 때, procymidone에 대해서 저항성인 B. cinerea의 비율은 2005년에 19.3%가 2006년에는 27.5%로 상승하였으며, 저항성 그룹의 평균 $EC_{50}$ 값도 $10.0{\mu}g/ml$에서 $237.3{\mu}g/ml$으로 상승하였다. Procymidone과 carbendazim의 경우에 다중저항성을 보이는 균주는 90개로 전체의 40.2%이었으며, 합제와의 다중저항성을 보이는 균주는 9개 밖에 없었다.

Keywords

References

  1. Davidse, L. C. 1973. Antimitotic activity of methylbenzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pestic. Biochem. Physiol. 3: 317-325 https://doi.org/10.1016/0048-3575(73)90030-8
  2. Davidse, L. C. 1986. Benzimidazole fungicides: Mechanism of action and biological impact. Ann. Rev. Phytopathol. 24: 43-65 https://doi.org/10.1146/annurev.py.24.090186.000355
  3. Elad, Y., Shabi, E. and Katan, T. 1988. Negative cross resistance between benzimidazole and N-phenylcarbamate fungicides and control of Botrytis cinerea on grapes. Plant Pathology 37: 141-147 https://doi.org/10.1111/j.1365-3059.1988.tb02206.x
  4. Fujimura, M., Kamakura, T., Inoue, H., Inoue, S. and Yamaguchi, I. 1992. Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates: Effect of amino acid substitutions at position 198 in ${\beta}$-tubulin. Pestic. Biochem. Physiol. 44: 165-173 https://doi.org/10.1016/0048-3575(92)90087-G
  5. Kato, T., Suzuki, K., Takahashi, J. and Kamoshita, K. 1984. Negatively correlated cross-resistance between benzimidazole fungicides and methyl N-(3,5-dichlorophenyl)carbamate. J. Pesticide Sci. 9: 489-495 https://doi.org/10.1584/jpestics.9.489
  6. Kawchuk, L. M., Hutchison, L. J., Verhaeghe, C. A., Lynch, D. R., Bains, P. S. and Holley, J. D. 2002. Isolation of the ${\beta}$-tubulin gene and charactrization of thiabendazole resistance in Gibberella pulicaris. Can. J. Plant Pathol. 24: 233-238 https://doi.org/10.1080/07060660309507001
  7. 김병섭, 최경자, 조광연. 1993. Benzimidazole 계 및 Dicarboximide 계 살균제에 저항성인 잿빛곰팡이병균(Botrytis cinerea)의 몇 가지 약제에 대한 반응. 한국식물병리학회지 9: 98-103
  8. 김병섭, 임태헌, 박은우, 조광연. 1995. Benzimidazole 계 및 Nphenylcarbamate 계 살균제에 다중저항성인 잿빛곰팡이병균의 발생. 한국식물병리학회지 11: 146-150
  9. Kim, C.-H. 1997. Review of fungicide resistance problem in Korea. In: Proceeding of international symposium fungicide resistance and development of new fungicides. pp. 1-14
  10. 김충회, 권순식. 1993. procymidone 저항성 딸기 잿빛곰팡이병균의 기생적 적응성. 한국식물병리학회지 9: 26-30
  11. 한국작물보호협회. 농약사용지침서. 2007
  12. Leroux, P. and Fritz, R. 1983. Antifungal activity of carboximides and aromatic hydrocarbons and resistance to these fungicides. In; Mode of action of antifungal agents. ed. by Trinci, A. P. J. and Ryley, J. F. Cambridge Univ. press, Cambridge, pp. 207-237
  13. 박인철, 예환해, 김충회. 1992. Procymidone, Vinclozolin, Benomylell에 저항성인 딸기 잿빛곰팡이병균의 발생. 한국식물병리학회지 8: 41-46
  14. Park, S.-Y., lung, O.-J., Chung, Y.-R. and Lee, C.-W. 1997. Isolation and characterization of a benomyl-resistant form of ${\beta}$-tubulin-encoding gene from the phytopathogenic fungus Botryotinia fuckeliana. Mol. Cells 7: 104-109
  15. Pommer, E. H. and Lorenz, G. 1982. Resistance of Botrytis cinerea Pers. to dicarboximide fungicides - a literature review. Crop Protect. 1: 221-230 https://doi.org/10.1016/0261-2194(82)90044-8
  16. Sholberg, P. L., Harlton, C., Haag, P., Levesque, C. A., O'Gorman, D. and Seifert, K. 2005. Benzimidazole and diphenylamine sensitivity and identity of Penicillium spp. that cause postharvest blue mold of apples using ${\beta}$-tubulin gene sequences. Postharvest Biol. Technol. 36: 41-49 https://doi.org/10.1016/j.postharvbio.2004.07.011
  17. Suzuki, K., Kato, T., Takahashi, J. and Kamoshita, K. 1984. Mode of action of methyl N-(3,5-dichlorophenyl)carbamate in the benzimidazole-resistant isolate of Botrytis cinerea. J. Pesticide Sci. 9: 497-501 https://doi.org/10.1584/jpestics.9.497
  18. Tomlin, C. D. S. 2006. The Pesticide manual. 14th, pp 1349
  19. Yamaguchi, I. and Fujimura, M. 2005. Recent topics on action mechanims of fungicides. J. Pesticide Sci. 30: 67-74 https://doi.org/10.1584/jpestics.30.67
  20. Yarden, O. and Katan, T. 1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83: 1478-1483 https://doi.org/10.1094/Phyto-83-1478

Cited by

  1. Changes in Sensitivity Levels of Botrytis spp. Population Isolated from Lily to Fungicides and Control under Field Condition vol.19, pp.1, 2013, https://doi.org/10.5423/RPD.2013.19.1.007
  2. Selection of KYC 3270, a Cellulolytic Myxobacteria of Sorangium cellulosum, against Several Phytopathogens and a Potential Biocontrol Agent against Gray Mold in Stored Fruit vol.27, pp.3, 2011, https://doi.org/10.5423/PPJ.2011.27.3.257