Preparation and Properties of Cellulose Triacetate Membranes for Reverse Osmosis

역삼투용 Cellulose Triacetate 막의 제조와 특성

  • Nam, Sang-Yong (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Hwang, Hae-Young (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Koh, Hyung-Chul (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
  • 남상용 (경상대학교 공과대학 고분자공학과, 아이큐브센터) ;
  • 황해영 (경상대학교 공과대학 고분자공학과, 아이큐브센터) ;
  • 고형철 (경상대학교 공과대학 고분자공학과, 아이큐브센터)
  • Published : 2007.12.30

Abstract

The technology of seawater desalination has been received much attentions to solve the problem of water shortage through all over the world. In this study, it attempts to confirm the use-possibility of cellulose triacetate (CTA) for preparation of reverse osmosis membranes which have been highlighted as high efficiency and low energy consumption process for seawater desalination. The effects of casting dope parameters like an acetyl content, solvent, additives on the membrane performance were investigated. It was possible to produce the membranes which have high water flow rate and salt rejection with the increase of acetyl content and dioxane content among various dioxane/acetone ratios. Acetic acid and maleic acid were preferred for additives to produce high performance membranes. It was verified that $HOLLOSEP^{(R)}$ module which is commercialized CTA membrane by TOYOBO Co. can produce stable water production and high-quality water for long-term operation in the practice plants without any chemical treatments.

전 세계적으로 물 부족 문제를 해결하기 위한 한 가지 대안으로서 해수 담수화 기술이 높은 관심을 받고 있다. 본 연구에서는 해수 담수화를 위한 고효율 저에너지 소모 공정으로 떠오르고 있는 역삼투막의 제조를 위해 cellulose triacetate(CTA)의 적용 가능성을 살피고자 하였다. 염소에 대한 안정성과 유기물에 대한 저항성을 가지는 CTA를 사용하여 막을 제조할 시 아세틸화도, 용매, 첨가제와 같은 제막 조성의 변화가 막의 성능에 미치는 것으로 나타난다. 높은 아세틸화도와 CTA의 용매인 다이옥산과 아세톤의 비에서 다이옥산의 함량이 높을수록 높은 유량과 염 제거율을 가지는 막의 제조가 가능하다. 첨가제로는 acetic acid와 maleic acid가 선호된다. 실제 해수 담수화 플랜트에 상용화된 CTA 막($HOLLOSEP^{(R)}$)을 적용해 본 결과 다른 화학적 처리 없이 계속적인 염소 처리만으로 장기간 안정된 유량과 수질을 나타낸다.

Keywords

References

  1. S. S. Madaeni and M. Ghanei, 'Reverse osmosis as a solution for water shortage in Iran', 9th Int'l water technology conf., IWTC9, pp. 217, sharm El-Sheikh, Egypt (2005)
  2. R. Engelman and P. Roy, 'Sustaining water, population and the future of renewable water supplies', Population action Int'l, Washington D.C. (1993)
  3. S. A. Kalogirou, 'Seawater desalination using renewable energy sources', Progress in Energy and Combustion Science, 31, 242 (2005) https://doi.org/10.1016/j.pecs.2005.03.001
  4. T. Mohammadi and A. Kaviani, 'Water shortage and seawater desalination by electrodialysis', Desalination, 158, 267 (2003) https://doi.org/10.1016/S0011-9164(03)00462-4
  5. T. Szacsvay, P. Hofer-Noser, and M. Posnansky, 'Technical and economic aspects of small-scale solar-pond-powered seawater desalination systems', Desalination, 122, 185 (1999)
  6. http://www.cheric.org/ippage/p/ipdata/2005/02/file/p200502-201.pdf (2005)
  7. http://www.membranes.co.kr, March 27 (2004)
  8. S. Sourirajan and T. S. Govindan, 'Water Desalination', Proc. 1st Int'l Symp., pp. 251, Wasington. D.C., USA (1967)
  9. S. Manjikian, S. Loeb, and J. W. McCutchan, 'Water Desalination', Proc. 1st Int'l Symp., pp. 159, Wasington. D.C., USA (1967)
  10. J. E. Cadotte and D. R. Lloyd, eds., 'Materials Science of Synthetic Membrane', ACS, pp. 273. Washington, D.C., USA (1984)
  11. T. Shintani, H. Matsuyama, and N. Kurata, 'Development of a chlorine-resistant polyamide reverse osmosis membrane', Desalination, 207, 340 (2007) https://doi.org/10.1016/j.desal.2006.08.009
  12. K. Kosutic and B. Kunst, 'Effect of hydrolysis on porosity of cellulose acetate reverse osmosis membranes', J. Appl. Polym. Sci., 81, 1768 (2001) https://doi.org/10.1002/app.1609
  13. A. P. Duarte, M. T. Cidade, and J. C. Bordado, 'Cellulose acetate reverse osmosis membranes: optimization of the composition', J. Appl. Polym. Sci., 100, 4052 (2006) https://doi.org/10.1002/app.23237
  14. A. S. Buntjakofv and V. M. Averyanova, 'The structure of solution and films of cellulose acetate', J. Polym. Sci., C38, 109 (1972)
  15. T. D. Nguyen, K. Chan, T. Matsuura, and S.Sourirajan, 'Polysulfone ultrafiltration membranes', Ind. Eng. Chem., Prod. Res. Dev. 24, 655 (1984) https://doi.org/10.1021/i300020a030
  16. L. Kastelan-Kunst, D. Sambrailo, and B. Kunst, 'On the skinned cellulose triacetate membranes formation', Desalination, 83, 331 (1991) https://doi.org/10.1016/0011-9164(91)85107-6
  17. S. V. Joshi and A. V. Rao, 'Cellulose triacetate membranes for seawater desalination', Desalination, 51, 307 (1984) https://doi.org/10.1016/0011-9164(84)87003-4
  18. Th. J. Eckman, I. Moch, and C. P. Shields, 'The TWINTM permeator - development and commercialization of a new RO device', Desalination, 96, 11 (1994) https://doi.org/10.1016/0011-9164(94)85152-2
  19. M. Busch and W. E. Mickols, 'Reducing energy consumption in seawater desalination', Desalination, 165, 299 (2004) https://doi.org/10.1016/j.desal.2004.06.035
  20. M. Kurihara, H. Yamamura, T. Nakanishi, and S. Jinno, 'Operation and reliability of very high-recovery seawater desalination technologies by brine conversion two-stage RO desalination system', Desalination, 138, 191 (2001)
  21. V. Polasek, S. Talo, and T. Sharif, 'Conversion from hollow fiber to spiral technology in large seawater RO systems - process design and economics', Desalination, 156, 191 (2001)
  22. http://www.toyobo.co.jp/e/seihin/ro/HL-series.htm
  23. S. A. Basha, K. Chida, M. Nishida, N. Fujiwara, and A. Kumano, 'The first successful operation of a single stage seawater RO plant exceeding 30% recovery in the Middle East', 6th Gulf water conference, Riyadh, Saudi Arabia (2003)
  24. A. Munoz Elguera, A. Nunez, and M. Nishida, 'Experimental test of TOYOBO membranes for seawater desalination at Las Palmas, Spain', Desalination, 125, 55 (1999) https://doi.org/10.1016/S0011-9164(99)00123-X
  25. A. Gorenflo, J. A. Redondo, and F. Reverberi, 'Basic options and two case studies for retrofitting hollow fiber elements by spiral-wound RO technology', Desalination, 178, 247 (2005) https://doi.org/10.1016/j.desal.2004.12.021
  26. N. Fujiwara, K. Numata, A. Kumano, Y. Ogino, M. Nagai, and H. Iwahashi 'The effect of heavy metal ions on the oxidation of cellulose triacetate membranes', Desalination, 96, 441 (1994) https://doi.org/10.1016/0011-9164(94)85193-X
  27. N. Fujiwara, T. Fukuda, Y. Yanaga, M. Sekino, and T. Goto, 'The reference and analysis of a double-element type hollow fiber RO module in seawater desalination', Desalination, 96, 431 (1994) https://doi.org/10.1016/0011-9164(94)85192-1