Improvement of Oxidative Stability for Non-fluorinated Membranes Prepared by Substituted Styrene Monomers

스티렌 유도체를 이용한 비불소계 고분자 전해질막의 산화적 안정성 개선

  • Moon, Seung-Hyeon (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Woo, Jung-Je (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Fu, Rong-Qiang (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Seo, Seok-Jun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Yun, Sung-Hyun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST))
  • 문승현 (광주과학기술원 환경공학과) ;
  • 우중제 (광주과학기술원 환경공학과) ;
  • 푸롱창 (광주과학기술원 환경공학과) ;
  • 서석준 (광주과학기술원 환경공학과) ;
  • 윤성현 (광주과학기술원 환경공학과)
  • Published : 2007.12.30

Abstract

To improve oxidative stability of non-fluorinated styrene-based polymer electrolyte membranes, copolymerized membranes were prepared using styrene derivatives such as p-methylstyrene, t-butylstyrene, and ${\alpha}-methylstyrene$ by monomer sorption method. Prepared membrane was characterized by measurement of weight gain ratio, water content, ion-exchange capacity, proton conductivity, and oxidative stability under the accelerated condition. It was found that each step of monomer sorption method including sorption, polymerization and sulfonation could be affected by the properties and the structures of styrenederivatives. Due to difficulty of polymerization, ${\alpha}$-methylstyrene was copolymerized with styrene or p-methylstyrene. Prepared membrane using ${\alpha}-methylstyrene$ and styrene showed higher performance and stability comparing to copolymerized membrane with styrene. However, copolymerized membranes with ${\alpha}-methylstyrene$ did not showed much improved oxidative stability comparing to styrene membrane due to their lower molecular weight. The t-butylstyrene membrane showed a low performance due to substituted bulky-butyl group which prevents sorption and sulfonation reaction. However, copolymerized t-butylstyrene membranes with p-methylstyrene showed good performance and much improved stability than the styrene membranes.

비불소계 스티렌 고분자 전해질 막의 산화안정성을 개선하기 위해 p-methyl styrene, t-butyl styrene, ${\alpha}-methyl$ styrene과 같은 스티렌 유도체를 단독 또는 복합으로 도입하고 모노머 흡수법을 이용하여 막을 제조하였다. 제조된 막의 특성분석으로 중합무게비, 함수율, 이온교환용량, 수소이온 전도도 및 가속조건에서의 산화안정성을 조사하였다. 사용된 스티렌 유도체의 구조 및 특성에 따라 모노머 흡수, 중합 및 술폰화 단계가 영향을 받는 것으로 나타났다. 산화적으로 안정한 고분자를 형성하는 ${\alpha}-methyl$ styrene은 중합 단계가 어렵기 때문에 스티렌 또는p-methyl styrene과 공중합하여 제조하였고 p-methyl styrene과 공중합된 ${\alpha}-methyl$ styrene 막은 스티렌과 공중합한 막보다 높은 전도도 및 안정성을 나타내었으나 낮은 분자량으로 인해 안정성의 개선을 크게 보이지 못하였다. 벤젠 고리에 큰 치환기를 갖는 t-butyl styrene은 모노머 흡수 및 술폰화과정이 용이하지 않기 때문에 제조된 막의 성능이 감소하였으며 이를 p-methyl styrene과 공중합할 때 우수한 성능과 스티렌막보다 크게 개선된 안정성을 보였다.

Keywords

References

  1. J. A. Kerres, 'Development of ionomer membranes for fuel cells', Journal of Membrane Science, 185(1), 3 (2001) https://doi.org/10.1016/S0376-7388(00)00631-1
  2. F. Barbir and T. Gomez, 'Efficiency and economics of proton exchange membrane (PEM) fuel cells', International Journal of Hydrogen Energy, 21(10), 891 (1996) https://doi.org/10.1016/0360-3199(96)00030-4
  3. 이영무, 이선용, '설폰산기를 함유한 PVA막의 직접 메탄올 연료전지 응용', 한국막학회지: 멤브레인, 14(3), 240 (2004)
  4. 임지원, 천세원, 전지현, 남상용, '폴리비닐알콜을 이용한 직접메탄을 연료전지용 이온교환막 제조에 관한 연구', 한국막학회지: 멤브레인, 13(3), 191 (2003)
  5. A. A. M. F. Filho and A. S. Gomes, 'Copolymerization of styrene onto polyethersulfone films induced by gamma ray irradiation', Polymer Bulletin, 57(4), 415 (2006) https://doi.org/10.1007/s00289-006-0574-7
  6. 김정훈, 신정필, 박인준, 이수복, 서동학, '직접 메탄올 연료전지를 위한 술폰화 폴리스티렌/테플론 복합막 제조 및 특성연구', 한국막학회지: 멤브레인, 14(2), 173 (2004)
  7. F. N. Buchi et al., 'Study of Radiation-Grafted Fep-G-Polystyrene Membranes as Polymer Electrolytes in Fuel-Cells', Electrochimica Acta, 40(3), 345 (1995) https://doi.org/10.1016/0013-4686(94)00274-5
  8. R. A. Assink, C. Arnold, and R. P. Hollandsworth, 'Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens', Journal of Membrane Science, 56(2), 143 (1991) https://doi.org/10.1016/S0376-7388(00)80804-2
  9. T. J. Schmidt, K. Simbeck, and G. G. Scherer, 'Influence of Cross-Linking on Performance of Radiation-Grafted and Sulfonated FEP 25 Membranes in H[sub 2]-O[sub 2] PEFC', Journal of the Electrochemical Society, 152(1), A93 (2005)
  10. J. H. Chen et al., 'Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films', Journal of Membrane Science, 269(1-2), 194 (2006) https://doi.org/10.1016/j.memsci.2005.06.013
  11. J. H. Chen et al., 'Improvement of chemical stability of polymer electrolyte fuel cell membranes by grafting of new substituted styrene monomers into ETFE films', Journal of Materials Science, 41(4), 1289 (2006) https://doi.org/10.1007/s10853-005-2573-8
  12. L. Gubler et al., 'Advanced monomer combinations for radiation grafted fuel cell membranes', Electrochemistry Communications, 8(8), 1215 (2006) https://doi.org/10.1016/j.elecom.2006.05.029