Cardiovascular Biofunctional Activity and Antioxidant Activity of Gugija (Lycium chinensis Mill) Species and Its Hybrids

구기자 품종과 교배종의 부위별 심혈관관련 질환 예방 기능성 및 항산화 활성비교

  • Park, Won-Jong (Dept. of Food Science and Technology, Kongju National University) ;
  • Lee, Bong-Chun (Cheoungyang Gugija Research Station) ;
  • Lee, Ju-Chan (Cheoungyang Gugija Research Station) ;
  • Lee, Eun-Na (Dept. of Life Science and Genetic Engineering, Paichai University) ;
  • Song, Jung-Eun (Dept. of Life Science and Genetic Engineering, Paichai University) ;
  • Lee, Dae-Hyung (Dept. of Life Science and Genetic Engineering, Paichai University) ;
  • Lee, Jong-Soo (Dept. of Life Science and Genetic Engineering, Paichai University)
  • 박원종 (공주대학교 식품공학과) ;
  • 이봉춘 (충남농업기술원 구기자 시험장) ;
  • 이주찬 (충남농업기술원 구기자 시험장) ;
  • 이은나 (배재대학교 생명유전공학과) ;
  • 송정은 (배재대학교 생명유전공학과) ;
  • 이대형 (배재대학교 생명유전공학과) ;
  • 이종수 (배재대학교 생명유전공학과)
  • Published : 2007.12.30

Abstract

To develop new high valuable Gugija (Lycium chinensis), biofunctionalities of Gugija standard species and its hybrids were investigated and compared with each water extracts and methanol extracts from Lycii Fructus, Lycii Folium and buds and Lycii Cortex Radicis. Among various biofunctionalities of Gugija standard species, antioxidant activity was showed the highest in methanol extracts from buds of Cheongwoon species (93%) and antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity was 84.1% in the water extracts from Lycii Cortex Radicis of Cheongyang NO.7. Futhermore, methanol extracts from Lycii Cortex Radicis of Myungan A-2 hybrid showed 93.1% of antioxidant activity and 96.9% of ACE inhibitory activity was also showed in the methanol extracts from Lycii Fructus of DO148-72(A11) hybrid. However, fibrinolytic activity and anticholesteromia HMG-CoA reductase inhibitory activity were weak or not detected in almost of Gugija standard species and its hybrids. Therefore, we finally selected Cheongwoon Gugija standard species (buds) and Myungan A-2 hybrid (Lycii Cortex Radicis) as good antioxidant sources and also DO148-72 (A11) hybrid (Lycii Fructus) as excellent antihypertensive ACE inhibitior sources for manufacturing functional food product.

새로운 고부가가치의 구기자 품종을 개발하기 위하여 구기자 표준 품종들과 이들의 교배종들의 순과 잎, 열매와 뿌리등의 물 추출물과 메탄올 추출물을 제조한 후 심혈관 질환 예방생리기능성과 노화억제 항산화 활성을 조사하여 비교하였다. 구기자 표준품종들의 생리기능성 가운데, 항산화 활성은 청운품종의 구기순의 메탄올 추출물이 93%로 가장 높았고 항고혈압성 안지오텐신 전환효소 저해활성은 청양7호의 지골피의 물 추출물에서 84.1%로 제일 높았다. 구기자 교배종의 생리 기능성중 항산화 활성은 명안A-2의 지골피의 메탄올 추출물이 93.1%로 제일 높았고 ACE저해활성은 DO148-72 (A11) 교배종 열매의 메탄올 추출물이 96.9%로 제일 높았다. 그러나 혈전용해활성과 HMG-CoA reductase 저해활성은 표준품종과 교배종 모두에서 대체로 미약하거나 없었다. 이상의 결과를 종합하였을 때 청운 표준품종의 구기순과 명안A-2 교배종의 지골피가 우수한 항산화 자원으로, DO148-72 (A11)교배종의 구기열매가 훌륭한 항고혈압성 ACE저해제 자원으로 각각 기능성 제품생산에 유용하게 활용될것으로 사료된다.

Keywords

References

  1. Blois MS (1958) Antioxidant determination by the use of stable free radical. Nature. 181:1199-1200 https://doi.org/10.1038/1811199a0
  2. Choi HS (1996) Studies on extracts from Grifola frondosa as an angiotensin converting enzyme inhibitor. MS Thesis. Hanyang Univ. Seoul. Korea
  3. Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20:1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  4. Funayama S, Yoshida K, Konno C, Hikino H (1980) Structure of kuko- amine A, a hypotensive principle of Lycium chinense root barkl. Tetrahedron Lett. 21:1355-1356 https://doi.org/10.1016/S0040-4039(00)74574-6
  5. Fayek KI, El-Sayed ST (1980) Purification and properties of fibrinolytic enzyme from Bacillus subtilis. Z. Allg. Mikrobiol. 20:375-382 https://doi.org/10.1002/jobm.3630200603
  6. Harashima Y, Yajima Y (1969) Preparation of zeaxanthin from berries of Boxthron, Lycium chinensis. Agric. Biol. Chem. 33: 1092-1094 https://doi.org/10.1271/bbb1961.33.1092
  7. Kim EH, Kim HW, Lee JC, Lee CH, Koh KH (2005) Analysis of chemical composition of Bulro gugi(Lycium chinense Mill) fruit, leaf, and root. Korean J. Food Sci. Technol. 37:154-163
  8. Kim JH, Lee DH, Jeong SC, Chung KS, Lee JS (2004). Characterization of antihypertensive angiotensin I-con-verting enzyme inhibitor from S. cerevisiae. J. Microbiol. Biotechnol. 14:1318-1323
  9. Kim NJ, Youn WG, Hong ND (1994) Pharmacological effects of Lycium chinensis. Korean. J. Pharmacogn. 25:264-271
  10. Kleinsek DA, Dugan RE, Baker TA, Porter JW (1981) 2-hydroxy-2 methylglutaryl coenzyme A reductase from rat liver. Meth. Enzymol. 71:462-479 https://doi.org/10.1016/0076-6879(81)71057-7
  11. Koo KC, Lee DH, Kim JH, Yu HE, Park JS, Lee JS (2006) Production and characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Pholiota adiposa. J. Microbiol. Biotechnol. 16:757-763
  12. Lee JS, Yi SH, Kwon SJ, Ahn C, Yoo JY (1997) Enzymatic activities and physiological functionality of yeasts from traditional Meju. Korean. J. Appl. Microbiol. Biotechnol. 25:448-452
  13. Lee SH, Song KB (2004) Isolation of an angiotensin converting enzyme inhibitory substance from Lycium chinense Mill. J. Food Sci. Nutr. 9:95-97 https://doi.org/10.3746/jfn.2004.9.1.095
  14. Morita H, Yoshida N, Takeya K, Itokawa H, Shirota O (1996) Configurational and conformational analyses of a cyclic octapeptide, Lyciumin A, from Lycium chinense Mill. Tetrahedron Lett. 2:2795-2802
  15. Noh TH (1999) Composition and effectiveness of Gugija. Cheongyang Gugija Experiment Station, Chungnam Agricultural Technology Research Institute of Korea. p. 7-14
  16. Park JS (2000) Agronomic characteristics and biological activities of new variety of Chungyang Gugija. Ph. D. Thesis. Chungnam Natl. Univ. Daejeon. Korea
  17. Park WJ, Park JI, Kim GS, Bock JY (1997) Studies on the separation and purification of carotenoid in Gugija(Lycii chinensis Mill). Kongju University Reserch. 5:223-235
  18. Park YJ, Kim MH, Bae SJ (2002) Enhancement of anticarcinogenic effect by combination of Lycii fructus with Vitamin C. J. Korean Soc. Food Sci. Nutr. 31:143-148 https://doi.org/10.3746/jkfn.2002.31.1.143
  19. Qin X, Yamauchi R, Aizawa K, Inakuma T, Kato K (2001) Structural features of arabinogalactan-proteins from the fruit of Lycium chinensis Mill. Carbohydr. Res. 333:1326-1330
  20. Sannai A, Fujimori T, Kato K (1983) Neutral volatile components of 'Kuko shi' (Lycium chinensis M.). Agric. Biol. Chem. 47:2397-2399 https://doi.org/10.1271/bbb1961.47.2397
  21. Wang Y, Zhao H, Sheng X, Gambino PE, Costello B, Bojanowski K (2002) Protective effect of Fructus Lycii polysaccharides against time and hyperthermia-induced damage in cultured seminiferous epithelium. J. Ethnopharmacol. 82:169-175 https://doi.org/10.1016/S0378-8741(02)00169-1
  22. 윤혜숙, 지정준, 우원식 (1979) 한국생약용식물 Flavonid검색. 서울대학교 생약연구소 업적집 18:9-11