Evaluation of Groundwater Contamination Potential of Pesticides Using Groundwater Ubiquity Score in Jeju Island Soils

Groundwater Ubiquity Score를 이용한 제주도 토양 특성별 농약의 지하수 오염가능성 평가

  • Hyun, Hae-Nam (Faculty of Bioscience and Industry, Cheju National University) ;
  • Jang, Gong-Man (Faculty of Bioscience and Industry, Cheju National University) ;
  • Oh, Sang-Sil (Jeju Provincial Institute of Health and Environment) ;
  • Chung, Jong-Bae (Division of Life and Environmental Sciences, Daegu University)
  • 현해남 (제주대학교 생물산업학부) ;
  • 장공만 (제주대학교 생물산업학부) ;
  • 오상실 (제주도보건환경연구원) ;
  • 정종배 (대구대학교 생명환경학부)
  • Published : 2007.09.30

Abstract

One of the most recent issues facing the pesticides regulatory process is the assessment of the potential for pesticides to leach through soil and appear in groundwater. Since Jeju island depends on a hydrogeologically vulnerable aquifer system as its principle source of drinking water, it is important to identify which pesticides are the most likely to result in groundwater contamination. The objective of this study was to assess groundwater contamination risk of 21 pesticides (12 insecticides, 6 herbicides and 3 fungicides) in Jeju soils using groundwater ubiquity score (GUS). Considering GUS estimated in 21 representative series of Jeju soils, generally herbicides showed relatively higher leaching potentials and insecticides showed lower leaching potentials. Groundwater contamination risk was higher in the order of bromacil > metolachlor > alachlor > linuron pretilachlor > butachlor for herbicides, carbofuran > ethoprophos > diazinone > dimethoate > penthoate > mecarbam > methidathion > endosulfan > fenitrothion > parathion > chlorpyrifos > terbufos for insecticides, and metalaxyl > chlorothalonil > triadimefon for fungicides. Among the tested pesticides alachlor, metolachlor, bromacil, ethoprophos and carbofuran were classified as the pesticides of very high or high groundwater contamination potential. Although the ranking of the leaching potential was essentially determined on the base of the intrinsic properties of the chemicals and environmental properties, variation of the relative groundwater contamination potentials of each pesticides in different soils were not significant. Therefore, the above ranking of groundwater contamination risk would be applied in most of Jeju soils. To lower the possibility of pesticide contamination of groundwater, the use of those pesticides classified as high or very high leaching potential should be strictly regulated in Jeju Island.

Groundwater ubiquity score(GUS)를 이용하여 제주도 농가에서 많이 사용되고 있는 농약에 대한 지하수 오염가능성을 평가하고 등급화 하였다. 살충제 12종, 제초제 6종, 살균제 3종을 선정하여 제주도 20개 토양통에 대한 흡착특성과 농약의 이화학적 특성을 이용하여 GUS를 구하였다. 제주도 토양에서 조사된 각종 농약의 전반적인 지하수 오염가능성은 제초제 > 살균제 > 살충제 순서이었다. 제초제의 지하수 오염가능성의 크기는 bromacil > metolachlor > alachlor > linuron pretilachlor > butachlor 순서로 나타났다. 살충제의 지하수 오염가능성의 크기는 carbofuran > ethoprophos > diazinone > dimethoate > penthoate > mecarbam > methidathion > endosulfan > fenitrothion > parathion > chlorpyrifos > terbufos 순서로 나타났다. 살균제의 지하수 오염가능성의 크기는 metalaxyl > chlorothalonil > triadimefon 순서로 나타났다. 이들 농약 중에서 특히 지하수 오염가능성이 높은 것으로 분류된 것은 제초제 alachlor, metolachlor, bromacil, 살충제 ethorophos와 carbofuran 그리고 살균제 metalaxyl이었다. 농약에 의한 지하수 오염을 방지하기 위해서는 농약의 절대 사용을 줄일 수 있는 방안을 마련함과 동시에 지하수 오염가능성이 낮고 오염시킨 예가 적은 약제의 선별적 사용이 바람직할 것이다. 그리고 특히 오염가능성이 매우 높은 것으로 평가되고 오염의 예가 많은 약제에 대해서는 적극적인 사용제한 방안을 마련할 필요도 있을 것이다.

Keywords

References

  1. Augustijn-Beckers, P. W. M, A. G. Homsby, and R. D. Wauchope (1994) The SCS/ARS/CES pesticide properties database for environmental decision making. II. Additional compounds, Rev. Environ. Contam. Toxicol. 137: 1-82
  2. Baker, J. L., and T. A. Austin (1985) Impact of agricultural drainage wells on groundwater quality. U.S. EPA Report No. 0007228010. US EPA, Washington, DC, USA
  3. Bushway, R. J., H. L. Hurst, L. B. Perkins, L. Tian, C. G. Cabanillas, B. E. S. Young, B. S. Ferguson, and H. S. Jennings (1992) Atrazine, alachlor and carbofuran contamination of well water in central Maine. Bull. Environ. Contam. Toxicol. 49: 1-9
  4. Cohen, S. Z., C. Eiden, and M. N. Lorber (1984) Monitoring ground water for pesticides. pp. 170-196. In Evaluation of pesticides in ground water (ed. W. Y. Gamer, R. C. Honeycutt, and H. N. Nigg). Symposium series 315. American Chemical Society, Washington, DC, USA
  5. Funari, E., and A. Sampaolo (1989) Erbicidi nelle acque potabili. Ann. Ist. Super. Sanita 25:353-362
  6. Gustafson, D. I. (1989) Groundwater ubiquity score: a simple method for assessing pesticide leacherbility. Environ. Tox. Chem. 8:339-357 https://doi.org/10.1897/1552-8618(1989)8[339:GUSASM]2.0.CO;2
  7. Hallberg, G. R., R. D. Libra, K. R. Long, and R. C. Splinter (1987) Pesticides : gorundwater and rural drinking water quality in Iowa. pp. 83-104. In Pesticides and groundwater: A health concern for the Midwest. The Freshwater Foundation and the US EPA, Navarre, MN, USA
  8. Hebb, E. A., and W. B. Wheeler (1978) Bromacil in lakeland soil ground water. J. Environ. Qual. 7:598-601 https://doi.org/10.2134/jeq1978.00472425000700040026x
  9. Holden, P. (1986) Pesticides and groundwater quality: Issues and problems in four states. Academic Press, Washington, DC, USA
  10. Janssen, H. M. J., and L. M Puijker (1988) Weedkillers applied on maize in the groundwater at vierlingsbeek KIWA report SWE 88.009, Nieuwegein, The Netherlands
  11. Kelley, R. D. (1988) Little Souix river pesticide monitoring report. Iowa Department of Natural Resources, Des Moines, IA, USA
  12. Kessler, K. (1987) Wisconsin's groundwater monitoring program for pesticides. pp. 105-113. In Pesticides and groundwater; A health concern for the Midwest. The Freshwater Foundation and the US EPA, Navarre, MN, USA
  13. Kimball, C. G., and W. A. Best (1987) Analysis and evaluation of field site groundwater monitoring. 1987 Annual Progress Report RCWP project 20. South Dakota State University, SD, USA
  14. Lafrance, P., O. Banton, P. G. C. Campbell, and J. P. Villeneuve (1990) A complexation-adsorption model describing the influence of dissolved organic matter on the mobility of hydrophobic compounds in groundwater, Water Sci. Tech. 22: 15-22
  15. McCarthy, J. F., and J. F. Zachara (1989) Subsurface transport of contaminants. Environ. Sci. Technol. 27:667-676 https://doi.org/10.1021/es00041a010
  16. Milde, G., J. Pibyl, M. Kiper, and P. Friesel (1982) Problems of pesticide use and the impact on groundwater, pp. 249-260. In Memoires Prague Congress, Intem Assoc. Hydrogeol. Novinar Publ. House, Prague, Czechoslovakia
  17. Nelson, D. W., and L. E. Sommers (1982) Total carbon, organic carbon, and organic matter. pp. 539-579. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. (ed. A. L. Page et al.) Soil Science Society of America, Madison, WI
  18. Ontario Ministry of Environment (1987a) Pesticides in Ontario drinking water, 1985. Water Resources Branch, Toronto, Canada
  19. Ontario Ministry of Environment (1987b) Pesticides in Ontario drinking water, 1986. Water Resources Branch, Toronto, Canada
  20. Seta, A. K., and A. D. Karathanasis (1997) Stability and transportability of water dispersible soil colloids. Soil Sci. Soc. Am. J. 61:604-611 https://doi.org/10.2136/sssaj1997.03615995006100020033x
  21. Stakelbeek, A. (1989) Bromacil at the grindweg pumping station at Bussum, $H_2O$ 1:26-29
  22. Vogelaar, A. J., C. G. E. M. van Beek, L. M. Puijker, and H. M. J. Jansen (1987) De aanwezigheid van de bestrijdingsmiddelen bromacil en amitrol in bet gronwater onttrokken op enkele geselekteerde winningen. KIWA Report SWO-87.329, Nieuwegein, The Netherlands
  23. Vogue, P. A., E. A. Kerle, and J. J. Jenkins (1994) OSU extension pesticide properties database. http://ace.orst.edu/info/nptnjppdmove.hkm
  24. Williams, W. M., P. W. Holden, D. W. Parsons, and M. N. Lorber (1988) Pesticides in groundwater data base interim report. Office of Pesticide Programs, US EPA, Washington DC, USA
  25. 제주도 (2000) 제주도환경백서
  26. 제주도 (2006) 제주도환경백서
  27. 제주도 (2003) 제주도 수문지질 및 지하수자원종합조사(3). 한국수자원공사