Pyriproxyfen Inhibits Hemocytic Phagocytosis of the Beet Armyworm, Spodoptera exigua

파밤나방(Spodoptera exigua)의 혈구세포 식균반응에 대한 피리프록시펜의 억제효과 Nalini Madanagopal

  • Madanagopal, Nalini (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Yong-Joon (Department of Bioelectric Engineering, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • ;
  • 이용준 (안동대학교 생명자원과학과) ;
  • 김용균 (안동대학교 바이오전자공학과)
  • Published : 2007.09.30

Abstract

The concept of innate immunity in insects which refers to the first line of host defense constitutes the humoral and cellular components which are involved in recognition and actively participate in the elimination of the intruding foreign micro- or macro-organisms. Several recent studies suggest that juvenile hormone (JH) modulates the cellular immune reactions in response to pathogen. In this study, pyriproxyfen (a JH agonist as an insect growth regulator) was tested in its any inhibitory effect on the immune reactions of the beet armyworm, Spodoptera exigua. To this end, five different hemocyte morphotypes of final instar S. exigua were identified by phase contrast microscopy. Plasmatocytes and granular cells, which constitute about 90% of the total hemocyte count, were prominently distinguished based on their basophilic/acidophilic nature using Giemsa stain. The role of pyriproxyfen on the functional ability of hemocytes was analyzed using FITC-labeled Providencia vermicola for the phagocytic potential of the hemocytes. Both granular cells and plasmatocytes exhibited phagocytosis behavior. Pyriproxyfen significantly inhibited the phagocytosis of both cell types, proposing its novel action as an immunosuppressant.

외래 병원체 침입에 대해서 방어기작으로서 곤충이 보이는 선천성 면역작용은 세포성 및 체액성 면역반응을 포함하며, 이는 비자기 인식 후 유기된다. 최근 여러 연구는 유약호르몬이 외래 물질에 반응한 세포성 면역작용을 조절한다고 제시하고 있다. 본 연구는 유약호르몬 동력제로서 곤충생장조절제인 피리프록시펜을 이용하여 이 약제가 가지는 면역억제작용을 파밤나방(Spodoptera exigua)을 대상으로 분석하였다. 이를 위해 본 연구는 위상차현미경을 이용하여 파밤나방 최종령 유충으로부터5가지 형태의 서로 다른 혈구세포를 동정하였다. 이 가운데 과립혈구와 부정형혈구는 전체 혈구의 90% 이상을 차지하며, Giemsa 염색법에 의해 이들 상호간에 뚜렷한 형태적 구분이 가능했다. 유약호르몬 동력제인 피리프록시펜의 혈구세포의 식균작용에 미치는 영향이 FITC로 표지된 세균(Providencia vermicola)을 이용하여 분석하였다. 과립혈구와 부정형혈구는 활발한 식균작용을 보였다. 피리프록시펜은 현격하게 이들 두 혈구세포의 식균작용을 억제시켰다. 본 연구는 면역억제자로서 피리프록시펜의 새로운 기능을 제시하고 있다.

Keywords

References

  1. Aderem, A. and D. M. Underhill (1999) Mechanisms of phagocytosis in macrophages. Annu, Rev. Immunol. 17:593-623 https://doi.org/10.1146/annurev.immunol.17.1.593
  2. Baines, D., T. Desantis and R. G. H. Downer (1992) Octopamine and 5 hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta americana) haemocytes. J. Insect Physiol. 38:905 -914 https://doi.org/10.1016/0022-1910(92)90102-J
  3. Chain, B. M., K. Leyshon Soland and M. T. Siva Jothy (1992) Haemocyte heterogeneity in the cockroach Periplaneta americana analyzed using monoclonal antibodies. J. Cell Sci. 103:1261-1267
  4. Clark, K. D., Y. Kim and M. R. Strand (2005) Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. J. Insect Physiol. 51:587 -596 https://doi.org/10.1016/j.jinsphys.2005.03.002
  5. Figueiredo, M. B., D. P. Castro, N. F. S. Nogueira, E. S. Garcia and P. Azambuja (2006) Cellular immune response in Rhodnius prolixus: role of ecdysone in hemocyte phagocytosis. J. Insect Physiol. 52:711 -716 https://doi.org/10.1016/j.jinsphys.2006.03.011
  6. Foukas, L. C., H. L. Katsoulas, N. Paraskevopoulou, A. Metheniti, M. Lambropoulou and V. J. Marmaras (1998) Phagocytosis of Escherichia coli by insect hemocytes requires both activation of the Ras/mitogen activated protein kinase signal transduction pathway for attachment and rf/.3 integrin for internalization J. Biol. Chem. 273:14813-14818 https://doi.org/10.1074/jbc.273.24.14813
  7. Franssens, V., G. Smagghe, G. Simonet, I. Claeys, B. Breugelmans, A. De Loof and J. Vanden Broeck (2006) 20 Hydroxyecdysone and juvenile hormone regulate the laminarin induced nodulation reaction in larvae of the flesh fly, Neobellieria bullata. Dev. Comp. Immunol. 30:735 -740 https://doi.org/10.1016/j.dci.2005.10.010
  8. Gardiner, E. M. M. and M. R. Strand (1999) Monoclonal antibodies bind distinct classes of hemocytes in the moth Pseudoplusia includens. J. Insect Physiol. 45: 113 -126 https://doi.org/10.1016/S0022-1910(98)00092-4
  9. Gho, H. G., S. G. Lee, B. P. Lee, K. M. Choi and J. H. Kim (1990) Simple mass rearing pf beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Korean J. Appl. Entomol. 29:180 183
  10. Gillespie, J. P., M. R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611-643 https://doi.org/10.1146/annurev.ento.42.1.611
  11. Goldsworthy, G., L. Mullen, K. Opoku Ware and S. Chandrakant (2003) Interactions between the endocrine and immune systems in locusts. Physiol. Entomol. 28:54-61 https://doi.org/10.1046/j.1365-3032.2003.00314.x
  12. Gregoire, C. (1974) Hemolymph coagulation. pp.309 360, In The Physiology of Insecta. (ed. Rockstein, M) Academic Press, New York
  13. Harlow, E. and D. Lane (1998) Labeling antibodies with fluorochromes. pp.85 87, In Using Antibodies. Cold Spring harbor Laboratory Press, New York
  14. Humason, G. L. (1972) Animal Tissue Techniques. W. H. Freeman and Company, San Francisco, CA
  15. Kawada, H., S. Saita, K. Shimabukuro, M. Hirano, M. Koga, T. Iwashita and M. Takagi (2006) Mosquito larvicidal effectiveness of EcoBio Block S: a novel integrated water purifying concrete block formulation containing insect growth regulator pyriproxyfen. J. Am. Mosq. Control Assoc. 22:451-456 https://doi.org/10.2987/8756-971X(2006)22[451:MLEOES]2.0.CO;2
  16. Kim, Y., S. Bae, S. Lee, D. Ji, J. Kim, Y. Hong and K. Kim (2004) A possible mechanism related with non spinning syndrome of Bombyx mori that intimidates the sericultural industry in northern Kyungbuk. Kor. J. Appl. Entomol. 43:143-153
  17. Kim, Y., E. D. Davari, V. Sevala and K. G. Davey (1999) Functional binding of a vertebrate hormone, L 3,5,3' triiodothyronine ($T_3$), on insect follicle cell membranes. Insect Biochem Mol. Biol. 29:943 -950 https://doi.org/10.1016/S0965-1748(99)00070-3
  18. Kwon, S. and Y. Kim (2007) Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Contr. (In press)
  19. Lanot, R., D. Zachary, F. Holder and M. Meister (2001) Post embryonic hematopoiesis in Drosophila. Dev. Biol. 230:243-257 https://doi.org/10.1006/dbio.2000.0123
  20. Lebestky, T., T. Chang, V. Hartenstein and U. Banerjee (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288:146-149 https://doi.org/10.1126/science.288.5463.146
  21. Madanagopal, N. and Y. Kim (2006) Parasitism by Cotesia glomerata induces immunosuppression of Pieris rapae: effects of ovarian protein and polydnavirus. J. Asia Pacific Entomol. 9:339-346 https://doi.org/10.1016/S1226-8615(08)60312-X
  22. Monconduit, H. and B. Mauchamp (1998) Effects of ultra doses of fenoxycarb on juvenile hormoneregulated physiological parameters in the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 37:178 -189 https://doi.org/10.1002/(SICI)1520-6327(1998)37:2<178::AID-ARCH6>3.0.CO;2-Q
  23. Mullet, H., N. A. Ratcliffe and A. F. Rowley (1993) The generation and characterization of anti insect blood cell monoclonal antibodies. J. Cell Sci. 105:93 -100
  24. Nathan, C. F. and J. B. Hibbs, Jr. (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3:65-70 https://doi.org/10.1016/0952-7915(91)90079-G
  25. Rantala, M. J., A. Vainikka and R. Kortet (2003) The role of juvenile hormone in immune function and pheromone production trade offs: a test of the immunocompetence handicap principle. Proc. R. Soc. Land B. 270:2257 -2261
  26. Ratcliffe, N. A., A. F. Rowley, S. W. Fitzgerald and C. P. Rhodes (1985) Invertebrate immunity: basic concepts and recent advances. Ind. J. Cytol. 97:186-350
  27. Robinson, J. M. and J. A. Badwey (1994) Production of active oxygen species by phagocytic leukocytes. Immunology 60: 159-178
  28. Sass, M., A. Kiss and M. Locke (1994) Integument and hemocyte peptides. J. Insect Physiol. 40:407-421 https://doi.org/10.1016/0022-1910(94)90159-7
  29. Sevala, V. L. and K. G. Davey (1989) Action of juvenile hormone on the follicle cells of Rhodnius prolixus: evidence for a novel regulatory mechanism involving protein kinase C. Experientia 45:355-356 https://doi.org/10.1007/BF01957476
  30. Shrestha, S. and Y. Kim (2007) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase $A_2$. J. Invertebr. Pathol. (In press)
  31. Stanley, D.W. (2000) Eicosanoids in Invertebrate Signal Transduction Systems. Princeton University Press, Princeton, NJ
  32. Strand, M. R. and J. A. Johnson (1996) Characterization of monoclonal antibodies to hemocytes of Pseudoplusia includens. J. Insect Physiol. 42:21-31 https://doi.org/10.1016/0022-1910(95)00079-8
  33. Theopold, U. and O. Schmidt (1997) Helix pomatia lectin and annexin V, two molecular probes for insect microparticles: possible involvement in hemolymph coagulation. J. Insect Physiol. 43:667 -674 https://doi.org/10.1016/S0022-1910(97)00013-9
  34. Whitten. M.M.A. and N.A. Ratcliffe (1999) In vitro superoxide activity in the haemolymph of the West Indian leaf cockroach, Blaberus discoidalis. J. Insect Physiol. 45:667 -675 https://doi.org/10.1016/S0022-1910(99)00039-6
  35. Willott, E., T. Trenczek, L. W. Throwerand and M. R. Kanost (1994) Immunochemical identification of insect hemocyte populations: monoclonal antibodies distinguish four major hemocyte types in Manduca sexta. Eur. J. Cell Biol. 65:417-423
  36. Yi, Y., H. W. Park, S. Shrestha, J. Seo, Y. O. Kim, C. S. Shin and Y. Kim (2007) Identification of two entomopathogenic bacteria from a nematode pathogenic to the oriental beetle, Blitopertha orientalis. J. Microbiol. Biotech. 17:968-978