Numerical Modeling of Tide and Tidal Current in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae (Department of Oceanography, College of Natural Sciences, Chungnam National University) ;
  • Jun, Woong-Sik (Dawoo Ocean Corporation) ;
  • Jung, Kwang-Young (Department of Oceanography, College of Natural Sciences, Chungnam National University) ;
  • Eom, Hyun-Min (Technology R&D Institute, Hyein E&C Co. Ltd.)
  • Published : 2007.09.30

Abstract

This study is based on a series of numerical modeling experiments to understand the tidal circulation in the Kangjin Bay (KB). The tidal circulation in the KB is mostly controlled by the inflow from two channels, Noryang and Daebang which introduce the open ocean water into the northern part of the KB with relatively strong tidal current, while in the southern part of the KB, shallowest region of the entire study area, weak tidal current prevails. The model prediction of the sea level agrees with observed records at skill scores exceeding 90 % in terms of the four major tidal constituents (M2, S2, K1, O1). However, the skill scores for the tidal current show relatively lower values of 87, 99, 59, 23 for the semi-major axes of the constituents, respectively. The tidal ellipse parameters in the KB are such that the semi-major axes of the ellipse for M2 range from 1.7 to 38.5 cm/s and those for S2 range from 0.5 to 14.4 cm/s. The orientations of the major-axes show parallel with the local isobath. The eccentricity values at various grid points of ellipses for M2 and S2 are very low with 0.2 and 0.06 on the average, respectively illustrating that the tidal current in the KB is strongly rectilinear. The magnitude of the tidal residual current speed in the KB is on the order of a few cm/s and its distribution pattern is very complex. One of the most prominent features is found to be the counter-clockwise eddy recirculation cell at the mouth of the Daebang Channel.

Keywords

References

  1. Blumberg, A F. and G. L. Mellor. 1987. A description of a threedimensional coastal ocean circulation model. p. 1-16. In: ThreeDimensional Coastal Ocean Models, Coastal Estuarine Sci., vol. 4, ed. by N. S. Heaps, AGU, Washington, D. C
  2. Blumberg, A.F., L.A. Khan, and J.P. John. 1999. ThreeDimensional Hydrodynamic Model of New York Harbor Region. J. Hydr. Eng., 125(8), 799-816 https://doi.org/10.1061/(ASCE)0733-9429(1999)125:8(799)
  3. Cai S., Q. Huang, and X. Long. 2003. Three-dimensional numerical model study of the residual current in the South China Sea. Oceanologica Acta, 26(5),597-607 https://doi.org/10.1016/S0399-1784(03)00053-7
  4. Fong, D. A 1998. Dynamics of freshwater plumes: Observations and numerical modeling of the wind forced response and along-shore freshwater transport. Ph.D. thesis, MIT/WHOI Joint Program in Oceanography, Woods Hole
  5. Foreman, M.G.G. 1978. Manual for Tidal Current Analysis and Prediction. Pacific Marine Science Report 78-6, Institute of Ocean Sciences, Patricia Bay, Victoria, B.C. 39p
  6. Gomez-Valdes, J., J.A. Delgado, and J.A. Dworak. 2003. Overtides, compound tides and tidal-residual current in Ensenada de la Paz Lagoon, Baja California Sur, Mexico. Geophysica Int., 42, 623-634
  7. Horrevoetsa, A.C., H.H.G. Savenijea, J.N. Schuurmana, and S. Graasa. 2004. The influence of river discharge on tidal damping in alluvial estuaries. J. Hydrol., 294, 213-228 https://doi.org/10.1016/j.jhydrol.2004.02.012
  8. Ji, Z. G., G. Hu, J. Shen, and Y. Wan. 2007. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary. Estuar. Coast. Shelf Sci., 73, 188-200 https://doi.org/10.1016/j.ecss.2006.12.016
  9. Jung, K.Y. 2007. Three-Dimensional Numerical Modeling of Tidal, Wind-Driven and Density Currents in the Kangjin bay, South Sea, Korea. M.S. thesis, Chungnam National University. 130p
  10. Kourafalou, V.H., L. Oey, J. Wang, and T.N. Lee. 1996a. The fate of river discharge on the continental shelf, 1, Modeling the river plume and inner shelf coastal current. J. Geophys. Res., 101, 3415-3434 https://doi.org/10.1029/95JC03024
  11. Kourafalou, V.H., T.N. Lee, L. Oey, and J. Wang. 1996b. The fate of river discharge on the continental shelf, 2, Transport of coastal low-salinity waters under realistic wind and tidal forcing. J. Geophys. Res., 101, 3435-3456 https://doi.org/10.1029/95JC03025
  12. Levasseur, A, L. Shi, N.C. Wells, D.A Purdie, and B.A KellyGerreyn. 2007. A three-dimensional hydrodynamic model of estuarine circulation with an application to Southampton Water, UK. Estuar. Coast. Shelf Sci., 73, 753-767 https://doi.org/10.1016/j.ecss.2007.03.018
  13. Matsumoto, K., T. Takanezawa, and M. Ooe. 2000. Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan. J. Oceanogr., 56, 567-581 https://doi.org/10.1023/A:1011157212596
  14. McLaughlin, J.W., A. Bilgili, and D.R. Lynch. 2003. Numerical modeling of tides in the Great Bay Estuarine System: Dynamical balance and spring-neap residual modulation. Estuar. Coast. Shelf Sci., 57, 283-296 https://doi.org/10.1016/S0272-7714(02)00355-4
  15. Marinone, S.G. and M.F. Lavyn, 2005. Tidal current ellipses in a three-dimensional baroclinic numerical model of the Gulf of California. Estuar. Coast. Shelf Sci., 64, 519-530 https://doi.org/10.1016/j.ecss.2005.03.009
  16. Mellor, G.L. and T. Yamada. 1982. Development of a turbulence closure model for geophysical fluid problem. Rev. Geophys. Space Physics, 20, 851-875 https://doi.org/10.1029/RG020i004p00851
  17. Odamaki, M. 1989. Tides and Tidal Current in the Tusima Strait. J. Oceanogr. Soc. Japan, 45, 65-82 https://doi.org/10.1007/BF02108795
  18. Orlan ski, I. 1976. A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21,251-269 https://doi.org/10.1016/0021-9991(76)90023-1
  19. Park, K, H.S. Jung, H.S. Kim, and S.M. Ahn. 2005. Threedimensional hydrodynamic-eutrophication model (HEM-3D): Application to Kwang-Yang Bay, Korea. Mar. Environ. Res., 60(2), 171-193 https://doi.org/10.1016/j.marenvres.2004.10.003
  20. Pawlowicz, R., B. Beardsley, and S. Lentz. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929-937 https://doi.org/10.1016/S0098-3004(02)00013-4
  21. Ro, YJ. 2006. Internet-based Realtime Monitoring of the Environmental Parameters in the Marine Large-Arc Shell Culture Bed and Its Productivity Assessment Model, Final Report, Ministry of Maritime Affairs and Fisheries. 155 p
  22. Ro, Y.J. 2007. Tidal and Sub-tidal Current Characteristics in the Kangjin Bay, South Sea, Korea. Ocean Sci. J., 42(1), 19-30 https://doi.org/10.1007/BF03020907
  23. Ro, Y. J., KH. Na, and C. K. Kim. 2004. 1st year Interim report for the Internet based Realtime Monitoring of the Oceanic Condition in the Kangjin Bay for Aqua-culture and its Productivity Estimation submitted to KMI, MOMAF. 95 p
  24. Ro, Y.J. and K.Y. Jung. 2007. 3-D Baroclinic Numerical Modeling of River Plume and Density Current due to Dam Water Discharge. To be submitted to Ocean Science Journal
  25. Ro, Y.J. and Y.H. Choi. 2004. Application of the Realtime Monitoring of Oceanic Conditions in the Coastal water for Environmental Management. J. Korean Soc. Oceanogt., 39(2), 148-154
  26. Ro, Y.J., W.S. Jun, K.Y. Jung, and B.H. Kim. 2005. Numerical Modeling of River Plume in the Kangjin Bay and Its Implication for the Ecosystem. Proc. of Autumn Meeting, 2005 of the Korean Society of Oceanography, Nov. 3-4, 2005, Ansan, Korea, 218-220
  27. Smagorinsky, J. 1963. General circulation experiments with the primitive equations, I. The basic experiments. Mon. Weather Rev., 91, 99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  28. Valle-Levinson, A. and T. Matsuno. 2003. Tidal and subtidal Flow along a Cross-shelf Transect on the East China Sea. J. Oceanogr., 59, 573-584 https://doi.org/10.1023/B:JOCE.0000009587.18145.d8