DOI QR코드

DOI QR Code

Soft lithographic patterning of proteins and cells inside a microfluidic channel

소프트 리소그라피를 이용한 마이크로유체 채널 내의 단백질 및 세포 패터닝

  • Suh, Kahp-Yang (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 서갑양 (서울대학교 기계항공 공학부)
  • Published : 2007.01.31

Abstract

The control of surface properties and spatial presentation of functional molecules within a microfluidic channel is important for the development of diagnostic assays, microreactors, and for performing fundamental studies of cell biology and fluid mechanics. Here, we present soft lithographic methods to create robust microchannels with patterned microstructures inside the channel. The patterned regions were protected from oxygen plasma by controlling the dimensions of the poly(dimethylsiloxane)(PDMS) mold as well as the sequence of fabrication steps. The approach was used to pattern a non-biofouling polyethylene glycol(PEG)-based copolymer or the polysaccharide hyaluronic acid(HA) within microfluidic channels. These non-biofouling patterns were then used to fabricate arrays of fibronectin(FN) and bovine serum albumin(BSA) as well as mammalian cells.

마이크로유체 채널 내에서 표면 성질과 기능성 분자들의 공간적인 위치를 제어하는 것은 진단소자, 마이크로 반응기, 또는 세포와 마이크로 유체역학의 기본적인 연구를 일해 매우 중요하다. 이 논문에서는 소프트 리소그라피 방법을 이용하여 채널 안에 패턴된 구조물을 포함하는 안정적인 마이크로 채널을 제작하는 방법을 소개하려 한다. 먼저 패턴된 영역을 폴리디메틸실록세인(PDMS) 몰드의 치수와 제작 과정을 적당히 조절함으로써 산소 플라즈마로부터 보호한다. 마이크로 구조물은 대표적인 생물오손(biofouling) 억제 물질인 폴리에틸렌 글리콜(PEG)계 공중합 고분자 혹은 다당류인 히알루산(HA)을 패턴하여 얻었으며 이러한 패턴을 이용하여 피브로넥틴(FN), 소의 혈장 알부민(BSA) 등의 단백질과 동물 세포의 어레이를 제작하였다.

Keywords

References

  1. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001) https://doi.org/10.1146/annurev.bioeng.3.1.335
  2. J. Lahann, M. Balcells, T. Rodon, J. Lee, I. S. Choi, K. F. Jensen, and R. Langer, Langmuir 18, 3632 (2002) https://doi.org/10.1021/la011464t
  3. T. L. Yang, S. Y. Jung, H. B. Mao, and P. S. Cremer, Anal. Chem. 73, 165 (2001) https://doi.org/10.1021/ac000997o
  4. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, Science 295, 647 (2002) https://doi.org/10.1126/science.1066238
  5. B. Zhao, J. S. Moore, and D. J. Beebe, Science 291, 1023 (2001) https://doi.org/10.1126/science.291.5506.1023
  6. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, Nature 404, 588 (2000) https://doi.org/10.1038/35007047
  7. X. Y. Jiang, J. M. K. Ng, A. D. Stroock, S. K. W. Dertinger, and G. M. Whitesides, J. Am. Chem. Soc. 125, 5294 (2003) https://doi.org/10.1021/ja034566+
  8. W. Zhan, G. H. Seong, and R. M. Crooks, Anal. Chem. 74, 4647 (2002) https://doi.org/10.1021/ac020340y
  9. J. Heo, K. J. Thomas, G. H. Seong, and R. M. Crooks, Anal. Chem. 75, 22 (2003) https://doi.org/10.1021/ac0259717
  10. S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, Proc. Natl. Acad. Sci. U. S. A. 96, 5545 (1999)
  11. B. Zhao, J. S. Moore, and D. J. Beebe, Anal. Chem. 74, 4259 (2002) https://doi.org/10.1021/ac020269w
  12. P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, Science 285, 83 (1999) https://doi.org/10.1126/science.285.5424.83
  13. W. G. Koh, L. J. Itle, and M. V. Pishko, Anal. Chem. 75, 5783 (2003) https://doi.org/10.1021/ac034773s
  14. W. G. Koh, A. Revzin, and M. V. Pishko, Langmuir 18, 2459 (2002) https://doi.org/10.1021/la0115740
  15. V. A. Liu and S. N. Bhatia, Biomed. Microdevices 4, 257 (2002) https://doi.org/10.1023/A:1020932105236
  16. M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides, Exp. Cell. Res. 235, 305 (1997) https://doi.org/10.1006/excr.1997.3668
  17. E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, J. Am. Chem. Soc. 120, 500 (1998) https://doi.org/10.1021/ja973071f
  18. S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, Nature 411, 1016. (2001) https://doi.org/10.1038/35082637
  19. A. Folch, A. Ayon, O. Hurtado, M. A. Schmidt, and M. Toner, J. Biomech. Eng. 121, 28 (1999) https://doi.org/10.1115/1.2798038
  20. Y. S. Kim, K. Y. Suh, and H. H. Lee, Appl. Phys. Lett. 79, 2285 (2001) https://doi.org/10.1063/1.1407859
  21. X. M. Zhao, Y. N. Xia, and G. M. Whitesides, Adv. Mater. 8, 837 (1996) https://doi.org/10.1002/adma.19960081016
  22. K. Y. Suh, Y. S. Kim, and H. H. Lee, Adv. Mater. 13, 1386 (2001) https://doi.org/10.1002/1521-4095(200109)13:18<1386::AID-ADMA1386>3.0.CO;2-X
  23. A. Khademhosseini, S. Jon, K. Y. Suh, T. N. T. Tran, G. Eng, J. Yeh, J. Seong, and R. Langer, Adv. Mater. 15, 1995 (2003) https://doi.org/10.1002/adma.200305433
  24. A. Khademhosseini, K. Y. Suh, S. Jon, G. Eng, J. Yeh, G. J. Chen, and R. Langer, Anal. Chem. 76, 3675 (2004) https://doi.org/10.1021/ac035415s
  25. S. Y. Jon, J. H. Seong, A. Khademhosseini, T. N. T. Tran, P. E. Laibinis, and R. Langer, Langmuir 19, 9989 (2003) https://doi.org/10.1021/la034839e
  26. K. Y. Suh, A. Khademhosseini, J. M. Yang, G. Eng, and R. Langer, Adv. Mater. 16, 584 (2004) https://doi.org/10.1002/adma.200306180

Cited by

  1. Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation vol.24, pp.5, 2015, https://doi.org/10.5757/ASCT.2015.24.5.196
  2. Cost Effective Fabrication of a Triboelectric Energy Harvester Using Soft Lithography vol.22, pp.4, 2013, https://doi.org/10.5757/JKVS.2013.22.4.198