Phenol Conversion Properties in Aqueous Solution by Pulsed Corona Discharge

펄스 코로나 방전에 의한 액체상 페놀 전환 특성

  • Lee, Hyun-Don (Department of Environmental Engineering, Jinju National University) ;
  • Chung, Jae-Woo (Department of Environmental Engineering, Jinju National University) ;
  • Cho, Moo-Hyun (School of Environmental Science and Engineering, POSTECH)
  • 이현돈 (국립진주산업대학교 환경공학과) ;
  • 정재우 (국립진주산업대학교 환경공학과) ;
  • 조무현 (포항공과대학교 환경공학부)
  • Published : 2007.01.31

Abstract

A laboratory scale experiment on phenol conversion properties by pulsed corona discharge process was carried out. Effects of operating parameters such as applied voltage, input oxygen, and electrode geometry on phenol conversion and solution properties were investigated. Electrical discharges generated in liquid phase increased the liquid temperature by heat transfer from current flow, decreased the pH value by producing various organic acids from phenol degradation, and increased conductivity by generating charge carriers and organic acids. The oxygen supply enhanced the phenol conversion through the ozone generation dissolution and the production of OH radicals. Series type electrode configuration induced more ozone production than reference type configuration because it produced gas phase discharges as well as liquid phase discharges. Therefore, the higher phenol conversion and TOC(total organic carbon) removal efficiency were obtained in series type configuration.

펄스 코로나 방전에 의한 페놀 수용액 처리 특성에 관해 실험실 규모 실험을 수행하였으며 페놀 전환에 미치는 인가전압, 유입 산소, 전극 구조의 영향을 관찰하였다. 액체상 내에서 일어나는 방전은 전류 흐름으로부터 용액으로의 열전달에 의해 용액의 온도를 상승시키고 페놀을 분해하여 각종 유기산을 생성시킴으로써 pH를 감소시키며, 하전입자의 생성과 유기산 생성으로 인해 용액의 전도도 값을 증가시키는 것으로 나타났다. 외부로부터 공급되는 산소는 용액 내에서 오존 생성과 용해를 통해 OH 라디칼을 생성시킴으로써 페놀의 분해속도를 증가시키는 것으로 나타났다. 방전이 액체상 및 기체상에서 동시에 발생하는 series type의 전극 구조를 사용하면 기체상에서 높은 농도의 오존을 생성시킬 수 있으므로 액체상에서만 방전이 발생하는 reference type의 전극 구조에서보다 높은 페놀 분해 속도와 TOC 제거 효율을 얻을 수 있는 것으로 나타났다.

Keywords

References

  1. Oglesy, S. Jr. and Nichols, G. B., Electrostatic Precipitation, Marcel Dekker, Inc., pp. 1-13(1978)
  2. Kogelschatz, U., 'Ozone generation and dust collection,' Electrical discharges for environmental purposes, E. M. Van Veldhuizen(Eds), Nova Science Publishers, Inc., New York, pp. 315-344(1999)
  3. 정재우, 이용환, 오종석, 손윤규, 조무현,'펄스형 전기 집진 시스템에 의한 고비저항도 먼지 제거 특성', 대한환경공학회지 , 25(2), 248-252(2003)
  4. Chang, J. S., Lawless. P. A., and Yamamoto, T., 'Corona Discharge Processes,' IEEE Transactions on Plasma Science, 19(6), 1152-1166(1991) https://doi.org/10.1109/27.125038
  5. Urashima, K. and Chang, J. S., 'Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology,' IEEE Transactions on Dielectrics and Electrical Insulation, 7(5), 602-614(2000) https://doi.org/10.1109/94.879356
  6. Muhammad, A. M., Abdul, G., and Salman, A. M., 'Water purification by electrical discharges,' Plasma Sources Science and Technology, 10, 82-91(2001) https://doi.org/10.1088/0963-0252/10/1/311
  7. Piskarev, M., 'Choice of conditions of an electrical discharge for generating chemically active particles for the decomposition of impurities in water,' Technical Physics, 44(1), 53-58(1999) https://doi.org/10.1134/1.1259251
  8. Ohshima, T., Sato, K., Terauchi, H., and Sato, Masayuki, 'Physical and chemical modifications of high-voltage pulse sterilization,' Journal of Electrostatics, 42, 159-166(1997) https://doi.org/10.1016/S0304-3886(97)00152-6
  9. Sunka, P., Babicky, V., Clupek, M., Lukes, P., Simek, M., Schmidt, J., and Cernak, M., 'Generation of chemically active species by electrical discahrges in water,' Plasma Sources Sci. Technol., 8, 258-265(1999) https://doi.org/10.1088/0963-0252/8/2/006
  10. Jang, S. D., Son, Y. G., Oh, J. S., and Kwon, O. J., 'High voltage nano-pulse generator for industrial wastewater treatment,' Journal of Korean Society of Industrial Application, 4(3), 311-318(2001)
  11. Joshi, A. A., Locke, B. R., Arce, P., and Finney, W. C, 'Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,' Journal of Hazardous Materials, 41, 3-30(1995) https://doi.org/10.1016/0304-3894(94)00099-3
  12. Lukes, P., 'Water treatment by pulsed streamer corona discharge,' Ph. D. Thesis, Institute of Plasma Physics, Academy of Science of the Czech Republic(2001)
  13. Lukes, P., Appleton, T., and Locke, B. R., 'Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors,' IEEE Transactions in Industry Applications, 40(1), 60-67(2004) https://doi.org/10.1109/TIA.2003.821799
  14. Hoeben, W. F. L. M., Veldhuizen, E. M., Rutgers, W. R., Cramers, C. A. M. G., and Kroesen, G. M. W., 'The degradation of aqueous phenol solutions by pulsed positive corona discharges,' Plasma Sources Sci. Technol., 9, 361-369(2000) https://doi.org/10.1088/0963-0252/9/3/315
  15. Grymonpre, D. R., Sharma, A. K., Finney W. C, and Locke, B. R, 'The role of Fenton's reactions in aqueous phase pulsed streamer corona reactors,' Chemical Engineering Journal, 82, 189-207(2001) https://doi.org/10.1016/S1385-8947(00)00345-4
  16. Hoigne, J., 'Mechanisms, rates and selectivities of oxidations of organic compounds initiated by ozonation of water,' In Handbook of Ozone Technology and Appli-cations(Rice, R. G. and Netzer, A. Eds), Ann Arbor Science, Michigan, pp. 341-379(1982)
  17. Lukes, P. and Locke, B. R., 'Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor,' Industrial & Engineering Chemistry Research, 44(9), 2921-2930(2005) https://doi.org/10.1021/ie0491342