Effect of DO Concentration on Ammonia Oxidizing Bacteria in Aerobic Biofilm Reactor

호기성 생물막 반응기에서 Ammonia Oxidizing Bacteria에 대한 DO 농도의 영향

  • Yu, Jae-Cheul (Department of Environmental Engineering, Pusan National University) ;
  • Park, Jeung-Jin (Department of Environmental Engineering, Pusan National University) ;
  • Hur, Sung-Ho (Department of Environmental Engineering, Pusan National University) ;
  • Kim, Yu-Jin (Department of Environmental Engineering, Pusan National University) ;
  • Byun, Im-Gyu (Institute for Environmental technology and industry, Pusan National University) ;
  • Lee, Tae-Ho (Department of Environmental Engineering, Andong National University) ;
  • Park, Tae-Joo (Department of Environmental Engineering, Pusan National University)
  • 유재철 (부산대학교 환경공학과) ;
  • 박정진 (부산대학교 환경공학과) ;
  • 허성호 (부산대학교 환경공학과) ;
  • 김유진 (부산대학교 환경공학과) ;
  • 변임규 (부산대학교 환경기술산업개발연구센터) ;
  • 이태호 (안동대학교 환경공학과) ;
  • 박태주 (부산대학교 환경공학과)
  • Published : 2007.01.31

Abstract

Ammonia oxidizing bacteria(AOB) oxidize ammonia to nitrite and are important microorganisms which control nitrification. Several environmental factors such as dissolved oxygen(DO), temperature and pH influence the growth of AOB. In this work, to assess the effect of DO concentration on AOB, four aerobic biofilm reactors packed with ceramic media were operated 1, 3, 5 and 7 mgDO/L, respectively. The optimal DO concentration with stable nitrification efficiency in aerobic biofilm reactor was above 5.0 mg/L. To assess the relationship between the DO concentration and the characteristics of AOB in aerobic biofiim reactor, DGGE and cloning based on PCR targeting 16S rRNA and amoA gene were performed. Additionally, INT-DHA activity test was proceeded to estimate the activity of AOB. As the results of DGCE and cloning, the community of AOB and the ratio of Nitrosomonas sp. changed little in spite of different nitrification efficiencies. INT-DHA activity test showed that the activity of AOB decreased as DO concentration decreased. It means that DO concentration does not affect the community of AOB, but the activity of AOB.

Ammonia oxidizing bacteria(AOB)는 $NH_4^+-N$$NO_2^--N$으로 산화시키며, 생물학적 질산화 단계에서 율속 단계로 작용하기 때문에 중요한 미생물이다. AOB의 성장은 용존산소, 온도, pH 등의 환경 인자에 영향을 받는다. 본 연구에서는 DO 농도가 AOB에 미치는 영향을 조사하기 위해 세라믹 메디아가 충전된 4개의 호기성 생물막 반응기의 DO 농도를 각각 1, 3, 5, 7 mg/L로 운전하였다. 운전결과, 5 mg/L 이상에서 안정적인 질산화 효율을 얻을 수 있었다. AOB의 특성을 조사하기 위해 AOB의 16S rRNA와 amoA gene을 target으로 PCR을 이용한 DGGE와 cloning을 실시하였으며, 이들의 활성을 조사하기 위해 INT-DHA를 측정하였다. DO 농도 변화에 따른 각 반응기별 질산화 효율에 차이가 있었음에도 불구하고, DGGE 및 cloning 결과, AOB 군집 및 Nitrosomonas sp.의 비율의 변화는 거의 없었다. DO 농도가 감소함에 따라 AOB의 활성도가 감소한다는 것을 INT-DHA 측정으로 확인할 수 있었다. 따라서 DO 농도는 AOB 군집의 변화 보다는 활성에 영향을 미치는 것으로 판단되었다.

Keywords

References

  1. Laia, C. L. and Jesus, G. G., 'Use of amoB as a new molecular marker for ammonia-oxidizing bacteria,' J. Microbiol. Methods., 57(1), 69-78(2004) https://doi.org/10.1016/j.mimet.2003.11.019
  2. Chih-Ju, G., Jou, and Huang, G. C, 'A pilot study for oil refinery wastewater treatment using a fixed film bio-reactor,' Adv. Environ. Research, 7, 463-469(2003) https://doi.org/10.1016/S1093-0191(02)00016-3
  3. Hagopian, D. S. and Riley. J. G., 'A closer look at the bacteriology of nitrification,' Aqua. Engineering, 18, 223-244(1998) https://doi.org/10.1016/S0144-8609(98)00032-6
  4. Okabe, S., Kindaichi, T., Ito, T., and Satoh, H., 'Analysis of size distribution and area cell density of ammonia-oxidizing bacterial microcolonies in relation to substrate microprofiles in biofilms,' Biotechnol. Bioeng., 85(1), 86-95(2003)
  5. Wagner, M. and Loy, A., 'Bacterial community composition and function sewage treatment systems,' Biotechnology, 13, 218-227(2002)
  6. Park, H., D. and Noguera, D., R., 'Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge,' Water. Res., 38, 3275-3285(2004) https://doi.org/10.1016/j.watres.2004.04.047
  7. Zhaojun Li, Jianming Xu, Caixian Tang, Jianjun Wu, Akmal Muhammand, and Haizhen Wang, 'Application of 16S rDNA-PCR amplification and DGGE fingerpring-ting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils,' Chemosphere, 62(8), 1374-1380(2006) https://doi.org/10.1016/j.chemosphere.2005.07.050
  8. Muyzer, G. and Smalla, K., 'Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology,' Antonie van Leeuwenhoek, 73, 127-141(1998) https://doi.org/10.1023/A:1000669317571
  9. Purkold, U., Pommerening-roser, A., Juretschko, S., Sch-mid, M. C., Koops, H-P., and Wagner, M., 'Phytogeny of all recognized species of ammonia oxidizers based on comparative 16s rRNA and amoA sequence analysis : Implications for molecular diversity surveys,' Appl. Environ. Microbiol., 66(12), 5368-5381(2000) https://doi.org/10.1128/AEM.66.12.5368-5382.2000
  10. Awong, J., Bitton, G., and Koopman, B., 'ATP, oxygen uptake rate and INT-dehydrogenase activity of acti-nomycete foams,' Water Res., 19(7), 917-921(1985) https://doi.org/10.1016/0043-1354(85)90151-4
  11. 환경부, 수질오염공정시험방법(2004)
  12. APHA, 'Standard methods for the examination of water and wastewater,' American Public Health Association, Washington, D.C.(1995)
  13. Kowalchuk, G. A., Stephen, J. R., De Boer, W., Prosser, J. I., Embley, T. M., and Woldendorp, J. W., 'Analysis of ammonia oxidizing bacteria of the ${\beta}$ subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments,' Appl. Environ. Microbiol., 63, 1489-1497(1997)
  14. Nicolaisen, M. H. and Niels, B. R., 'Denaturing gradient gel electrophoresis(DGGE) approaches to study the diversity of ammonia-oxidizing bacteria,' J. Microbiol Metthods., 50, 189-203(2002) https://doi.org/10.1016/S0167-7012(02)00026-X
  15. Koopman B., Bitton G., Logue C, John M. Bossart, and Juan Lopez, M., 'Validity of tetrazolium reduction assays for assessing toxic inhibition of filamentous bacteria in activated sludge,' Toxicity screening procedures using bacterial systems(Edited by Dickson Liu and Bernard J. Dutka), 147-162(1984)
  16. Lee, S.-M., Jung, J.-Y., and Chung, Y.-C, 'Measurement of ammonia inhibition of microbial activity in biological wastewater treatment process using dehydrogenase assay,' Biotechnology Letters, 22, 991-994(2000) https://doi.org/10.1023/A:1005637203643
  17. 임정훈, '생화학학적 측정기법을 이용한 생물막 질산화 공정 해석', 부산대학교, 박사 학위 논문, 86-89(2003)
  18. Wiesmann, U., 'Biological Nitrogen Removal from Wastewater,' Adv Biocem Eng Biotechnol., 51, 113-154(1994)
  19. Lazarova, N. R., Manem, J., and Melo, L., 'Influence of dissolved oxygen on nitrification kinetics in a circulating bed reactor,' Water Sci. Technol., 37(4), 189-193(1998)
  20. Limpiyakorn, T., Shionhara, Y., Kurisu, F., and Yagi, O. i., 'Communties of ammonia-oxdizing bacteria in activated sludge of various sewage treatment plants in tokyo,' FEMS Microbial. Ecol., 54(2), 205-217(2005) https://doi.org/10.1016/j.femsec.2005.03.017
  21. Ulirike, P. M., Wagner, G. T., Andress, P., and Hans-Peter, K., '16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolate: extension of the dataset and proposal of a new lineage within the nitrosomonasds,' Int. syste. evol. microbiol., 53, 1485-1494(2003) https://doi.org/10.1099/ijs.0.02638-0
  22. Gieseke, A., Purkhold, U., Wagner, M., Amann, R., and Schramm, A., 'Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm,' Appl Environ Microbiol., 67(3), 1351-62(2001) https://doi.org/10.1128/AEM.67.3.1351-1362.2001