Application of Earthworm Casting-derived Biofilter Media for Hydrogen Sulfide Removal

지렁이 분변토를 이용한 생물담체가 충전된 바이오필터에 의한 황화수소 제거

  • 유선경 (한국해양연구원 해양시스템안전연구소) ;
  • 이은영 (수원대학교 환경공학과)
  • Published : 2007.07.31

Abstract

Earthworm casting was the natural fertilizer that contained high concentrations of nutrients such as nitrogen, phosphate and potassium and of over $10^8$ CFU/ml of microorganisms. Greater than 80% of feed was excreted through the fermentation by the intestinal enzyme, after worm had eaten feeds such as fallen leaves and rotten roots under the ground. Also, the soil structure of casting was known to be very efficient in the aspects of the porosity, the water permeability, and deodorizing activities. In this research, the biofilter packed with a biomedia made of casting and waste polyurethane foam, a binder, which helped to improve the durability and perpetuity of casting, was investigated to degrade malodorous hydrogen sulfide gas. The biomedia had no need of extra supply of nutrients and of microbial inoculations. On the beginning of the operations, it showed 100% removal of hydrogen sulfide gas without lag phase. At SV of 50 $h^{-1}$, hydrogen sulfide gas from the outlet of the biofilter was not detected, when inlet concentration increased to 450 ppmv. After that, removal efficiency decreased as increasing inlet hydrogen sulfide concentration. Hydrogen sulfide removal was maintained at almost 93% until inlet concentration was increased up to 950 ppmv, at which the elimination capacity of $H_2S$ was 61.2 g $S{\cdot}m^{-3}{\cdot}h^{-1}$. Maximum elimination capacity guaranteing 90% removal was 61.2, 65.9, 84.7, 89.4 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ at SV ranging from 50 $h^{-1}$ to 300 $h^{-1}$, but was 59.3 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ at SV of 400 $h^{-1}$. The results calculated from Michaelis-Menten equation revealed that $V_m$ increased from 66.04, 88.96, 117.35, 224.15, to 227.54 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ with increasing space velocity in the range of 50 $h^{-1}$ to 400 $h^{-1}$. However, saturation constant$(K_s)$ decreased from 79.97 ppmv to 64.95 and 65.37 ppmv, and then increased to 127.72 and 157.43 ppmv.

지렁이 분변토는 낙엽이나 땅 속의 썩은 뿌리 등을 먹고 장 내의 효소에 의해 부숙화시켜 섭취한 먹이의 80% 이상을 그대로 배설한 질소, 인산, 칼륨 등의 함량이 매우 높고 미생물량도 $10^8$ CFU 이상이 되는 천연비료이다. 또한, 분변토의 단립 구조는 통기성 및 투수성이 매우 우수하며, 비표면적이 크고 양이온 교환용량(2.30-4.60 mg/g-soil)이 높아 탈취 능력이 있는 것으로 알려져 있다. 따라서 본 연구에서는 분변토의 특성을 유지하고 내구성을 향상시켜주기 위해 폐 polyurethane form을 binder로 하여 담체를 제조한 후, 이를 충전한 바이오필터를 대상으로 악취가스 중 황화수소의 제거 성능을 평가하였다. 본 담체는 별도의 배지를 사용하지 않고 분변토 자체에 포함된 유기, 무기물질을 이용하고, 분변토 자체에 있는 미생물을 이용하여 황화수소를 제거할 수 있었다. 황화수소 주입직후부터 lag phase없이 100%의 제거효율을 보였다. 공간속도 50 $h^{-1}$인 경우 입구농도 450 ppmv까지 출구에서 황화수소가 검출되지 않았으며, 악취가스의 입구 농도가 증가함에 따라 바이오필터의 제거효율이 감소하여 출구의 황화수소 농도가 증가하였다. 이 후 950 ppmv까지 약 93% 이상의 우수한 제거효율은 보였고, 약 61.2 g $S{\cdot}m^{-3}{\cdot}h^{-1}$의 최대제거용량을 얻을 수 있었다. 90% 이상의 제거효율을 갖는 황화수소의 최대제거용량은 SV 50 $h^{-1}$에서 300 $h^{-1}$로 증가함에 따라, 61.2, 65.9, 84.7, 89.4 g $S{\cdot}m^{-3}{\cdot}h^{-1}$로 증가하다가 SV 400 $h^{-1}$ 에서는 약 59.3 g $S{\cdot}m^{-3}{\cdot}h^{-1}$로 감소하였다. 공간속도의 증가에 따른 최대제거속도$(V_m)$와 포화상수$(K_s)$를 Michaelia-Menten식으로부터 구한 결과, 각각 66.04, 88.96, 117.35, 224.15, 227.54 g $S{\cdot}m^{-3}{\cdot}h^{-1}$로 비례적으로 증가하였으며, 반면 포화상수는 79.97, 64.95, 65.37, 127.72, 157.43 ppmv으로 감소한 후 다시 증가하는 경향을 보였다.

Keywords

References

  1. 환경부, 악취방지법(2004)
  2. Bo, I. De., Langenhove, H. V., and Heyman, J., 'Removal of dimethyl sulfide from waste air in a membrane bioreactor,' Desa., 148, 281-287(2002) https://doi.org/10.1016/S0011-9164(02)00715-4
  3. 허목, '악취 방지기술과 평가,' 한국냄새환경학회지, 2, 1-13(2003)
  4. 임정수, 이은영, 조욱상, 'Biomedia를 충전한 Biofilter에서 $H_{2}S$$NH_{3}$ 혼합악취의 제거,' 한국청정기술학회지, 12(3), 165-170(2006)
  5. Elias, A., Barona, A., Arreguy, A., Rios, J., Aranguiza, J., and Penas, J., 'Evaluation of a packing material for the biodegradation of $H_{2}S$ and product analysis,' Process Biochem., 37, 813-820(2002) https://doi.org/10.1016/S0032-9592(01)00287-4
  6. Reynolds, F. E. and Grafton, W. D., 'Biofiltration: an old technology comes of age,' Environ. Technol., 7/8, 51-52(1999)
  7. 이은영, 조욱상, '폐자동차에서 회수된 폐폴리우레탄과 분변토를 이용한 바이오필터용 생물담체의 제조,' 한국냄새환경학회지, 4(1), 35-41(2005)
  8. Cohen, Y., 'Biofiltration -the treatment of fluids by microorganisms immobilized into the filter bedding material: a review,' Biores. Technol., 77, 257-274(2003)
  9. Yang, Y. and Allen, E. R., 'Biofiltration control of hydrogen sulfide 1. Design and operational parameters,' J. Air & Waste Manage. Assoc., 44, 863-868(1994)
  10. Ergas, S. J., Schroeder, E. D., Chang, D. P. Y., and Morton, R. L., 'Control of volatile organic compound emissions using a compost biofilter,' Water Environ. Res., 67(5), 816-821(1995) https://doi.org/10.2175/106143095X131736
  11. Ottengraf, S. P. P., 'Exhaust gas purification,' In Biotechnol., Rehm, H. J. and Reed, G.(eds.), Vol 8. VCH, Weinheim, pp. 425-452(1986)
  12. Van Lith. C., Lesen, G., and Michelsen, R., 'Evaluation design operation for biofilters,' J. Air & Waste Manage. Assoc., 47, 37-48(1997) https://doi.org/10.1080/10473289.1997.10464410
  13. Auria, R., Aycaguer, A. C., and Devinny, J., 'Influence of water content on the degradation capacity if ethanol in biofiltration,' J. Air Waste Management Assoc., 48, 65-70(1998) https://doi.org/10.1080/10473289.1998.10463667
  14. Cox, H. H. J., Doddema, H. J., Harder, W., and Magierlsen, F. J., 'Influence of the water content and water activity on styrene degradation by Exophiala jeanselmei in biofilters,' Appl. Microbiol. Biotechnol., 45, 85-857(1996)
  15. 최훈근, 류제근, 토양생물지렁이를 이용한 폐기물 활용, 신광출판사, 서울, pp. 114-123(2001)
  16. Chung, Y. C., Huang, C., and Tseng, C. P., 'Removal of hydrogen sulfide by immobilized Thiobacillus sp. strain CH11 in a biofilter,' J. Chem. Tech. Biotechnol., 69, 58-62(1997) https://doi.org/10.1002/(SICI)1097-4660(199705)69:1<58::AID-JCTB660>3.0.CO;2-H
  17. Lec, S. K. and Shoda, M., 'Biological deodorization using activated carbon fabric as a carrier of microorganisms,' J. Ferment. Bioeng., 68, 437-432(1991) https://doi.org/10.1016/0922-338X(89)90101-3
  18. Leson, G. and Winer, A. M., 'Biofiltration: an innovative air pollution control technology for VOC emission,' J. Air Waste Manag. Assoc., 41, 1045-1054(1991) https://doi.org/10.1080/10473289.1991.10466898
  19. 이은영, '황산화 세균과 암모니아 산화세균의 분리와 황화계 및 암모니아 악취제거의 특성,' 박사학위논문, 이화여대(1999)
  20. Shuler, M. L. and Kargi, F., Bioprocess engineering, Prentice-Hall International Series, London, pp. 66(1992)
  21. Oyarzun, P., Arancibia, F., Canales, C., and Aroca, G. E., 'Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus,' Process Biochem., 39, 165-170(2003) https://doi.org/10.1016/S0032-9592(03)00050-5
  22. Chung, Y., Huang, C., and Tseng, C. P., 'Microbial oxidation of hydrogen sulfide with biofilter,' J. Environ. Sci. Health(A)., 31, 139-155(1996) https://doi.org/10.1080/10934529609376348
  23. Chung, Y., Huang, C., and Tseng, C. P., 'Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal,' J. Biotechnol., 52, 31-38(1996) https://doi.org/10.1016/S0168-1656(96)01622-7
  24. Tanji, Y., Kanagawa, T., and Mikami, E., 'Removal of hydrogen sulfide, methyl mercaptan, and hydrogen sulfide by immobilized Thiobacillus thioparus TK-m,' J. Ferment. Bioeng., 67, 280-285(1987) https://doi.org/10.1016/0922-338X(89)90232-8