Influence of Ammonia and Dissolved Oxygen Concentrations on Nitrite Accumulation in a MBR

MBR 반응조에서 아질산염 축적에 미치는 암모니아와 용존산소 농도의 영향 연구

  • Choi, In-Su (Department of Environment Engineering, University of Seoul) ;
  • Wiesmann, Udo (Department of Environment Engineering, Faculty III. TU Berlin, Germany)
  • 최인수 (서울시립대학교 환경공학부) ;
  • 우도 비스만 (독일 베를린 공과대학교, 환경공정공학연구실)
  • Published : 2007.08.31

Abstract

The complete oxidation of ammonia to nitrate is a distinctive two-step process divided into the oxidation of ammonia to nitrite(nitritation) by Nitrosomonas and the oxidation of nitrite to nitrate(nitratation) by Nitrobacter. The nitrogen removal via nitrite accumulation offers several advantages such as saving costs for aeration, saving carbon source and finally reduction of sludge discharge. In this work a suspended bioreactor coupled with membrane filtration(MBR) was used to find the process conditions of nitrite build-up. The MBR enables to reach sufficient nitrifying bacteria in the bioreactor, although the autotrophic bacteria can be easily washed out due to their lower growth rate. The dissolved oxygen concentration $c'_{O2}$ and ammonia concentration $c_{NH3}$ in the reactor were varied and investigated as parameters for nitrite accumulation. As a result the higher ammonia concentration in the reactor is very effective for starting nitrite build-up and the effect was strengthened in combination with lower dissolved oxygen concentration. With lower $c'_{O2}<0.3$ $mgL^{-1}$ $O_2$ and high $c_{NH3}=6.3\sim14.9$ $mgL^{-1}$ $NH_3N$ the 74% of the nitrite accumulation was achieved. Specially, it was found that the nitrite accumulation could occur not only in biofilm reactor as many references showed but also in the membrane bioreactor carried out in this study.

암모니아의 질산염으로의 산화는 2개의 산화과정으로 구분된다. 나이트로좀머나스(Nitrosomonas)에 의한 암모니아의 아질산염으로의 산화와 나이트로박터(Nitrobacter)에 의한 아질산염의 질산염으로의 산화이다. 아질산염 축적 과정을 거치는 질소의 제거는 포기를 위한 에너지의 절약, 탈질과정에서 투입되는 유기물의 절약 및 발생되는 슬러지의 양을 감소시킬 수 있는 다양한 장점들을 가지고 있다. 본 연구에서는 아질산염 축적의 조건들을 찾기 위해 막분리 장치를 장착한 생물분리막 반응조(MBR)가 사용되었다. 생물 분리막 반응조는 성장속도가 늦어 쉽게 유실되어질 수 있는 독립영양 질산화 박테리아를 반응조내 충분히 유지시키는데 중요한 역할을 한다. 반응조내 용존산소와 암모니아의 농도를 변화시키며 아질산염 축적의 영향인자들을 조사하였다. 연구의 결과로 반응조내 높은 암모니아 농도는 아질산염 축적을 시작하는데 매우 효과적이었으며, 이러한 효과는 반응조내 낮은 용존산소 농도가 동시에 존재할 시 더욱 강화되었다. 낮은 용존산소 농도 $c'_{O2}<0.3$ $mgL^{-1}$ $O_2$와 높은 암모니아 농도 $c_{NH3}=6.3\sim14.9$ $mgL^{-1}$ $NH_3N$에서 아질산염 축적율 74%에 달성될 수 있었다. 특히 아질산염 축적이 많은 연구자들이 제시하는 것처럼 생물막 반응조에서 뿐만 아니라, MBR 반응조에서도 일어날 수 있음을 밝힌 것은 본 연구의 중요한 성과라 할 것이다.

Keywords

References

  1. Wiesmann, U., Choi, I. S., Dombrowski, E.-M., Fundamentals of biological wastewater treatment, Wiley-VCH, pp. 223-265, ISBN: 3-527-31219-6(2006)
  2. Metcalf & Eddy, Wastewater Engineering, treatment and reuse, Mc Graw Hill, pp. 545-657, ISBN: 007-124140-x, 3th edition(2004)
  3. Grady JR, C.P. Leslie, Daigger Glen T, Lim Henry C., Biological wastewater treatment, Marcel Dekker, Inc. pp. 487-560, ISBN: 0-8247-8919-9(1999)
  4. Focht, D.D. and Verstraete, W., 'Biochemical ecology of nitrification and denitrification,' Adv. Microb Ecol., 1, 135-214(1977)
  5. ATV, Abwassertechnische Vreinigung ATV(Hrsg.) : Handbuch der Abwassertechnik, Bd. IB; 3. Aufl., Verlag Wilhelm Ernst und Sohn, Berlin(1985)
  6. Garrido, J.M., van Benthum, W.A.J., van Loosdrecht, M.C.M., and Heijnen, J.J., 'Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor,' Biotechnol. Bioeng., 53(2), 168-178(1997) https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M
  7. Ruiz, G., Jeison, D., and Chamy, R., 'Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration,' Water Res., 37(6), 1371-1377(2003) https://doi.org/10.1016/S0043-1354(02)00475-X
  8. Yun, H. J. and Kim, D. J., 'Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor,' J Chem. Technol. Biotechnol., 78(4), 377-383(2003) https://doi.org/10.1002/jctb.751
  9. Jayamohan, S., Ohgaki, S., and Hanaki, K., 'Effect of DO on kinetics of nitrification,' Water Supply, Jonkoping, Sweden, 6, 141-150(1988)
  10. Hunik, J. H., Tramper, J., and Wijffels, R. H., 'A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis,' Bioprocess Eng., 11(2), 73-82(1994) https://doi.org/10.1007/BF00389563
  11. Anthonisen, A. C., Loehr, R. C., Prakasam, T.B.S., and Srinath, E.G., 'Inhibition of nitrification by ammonia and nitrous acid,' Journal Water Pollution Control Federation., 48(5), 835-852(1976)
  12. Abeling, U. and Seyfried, C.F., 'Anaerobic-aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrite,' Water Sci. Technol., 26(5-6), 1007-1015(1992)
  13. Balmelle, B., Nguyen, K.M., Capdelville, B., Cornier, J.C., and Deguin, A., 'Study of the factors controlling nitrite build-up in biological processes for water nitrification,' Water Sci. Technol., 26(5-6), 1017-1025(1992)
  14. Turk, O. and Mavinic, D.S., 'Maintaining nitrite build-up in a system acclimated to free ammonia,' Water Res., 23(11), 1383-1388(1989) https://doi.org/10.1016/0043-1354(89)90077-8
  15. Smith, R.V., Burns, L.C., Doyle, R.M., Lennox, S.D., Kelso, B. H. L., For, R. H., and Stevens, R. J., 'Free ammonia inhibition of nitrification in river sediments leading to nitrite accumulation,' J. Environ. Qual., 26, 1049-1055(1997) https://doi.org/10.2134/jeq1997.00472425002600040016x
  16. Surmcz-Gorska, J., Cichon, A., and Miksch, K., 'Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification,' Water Sci. Technol., 36(10), 73-78(1997)
  17. Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., van Loosdrecht, M.C.M., and Heijen, J.J., 'The Sharon process: an innovative method for nitrogen removal from ammonium-rich waste water,' Water Sci. Technol., 37(9), 135-142(1998)
  18. Suzuki, I., Kwok, S.C., and Dular, U., 'Ammonia or ammonium ion as substrate for oxidation by nitro somonas cells and extracts,' J. Bact., 120, 555(1974)
  19. Bergeron, P., Untersuchungen zur Kinetik der Nitrifikation; Karlsruher Berichte zur Ingenieurbiologie, Heft 12 (1978)
  20. Wiesmann, U., 'Biological nitrogen removal from wastewater,' Advances in Biochemical Engineering Biotechnology, 51, 113-154(1994) https://doi.org/10.1007/BFb0008736
  21. Kuai, L. and Verstraete, W., 'Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system,' Appl. Environ. Microbiol., 64(11), 4500-4506 (1998)
  22. Joo, S.H., Kim, D.J., Yoo, I.K, Park, K.M., and Cha, G.C., 'Partial nitrification in an upflow biological aerated filter by $O_2$ limitation,' Biotechnol. Lett., 22, 937-940(2000) https://doi.org/10.1023/A:1005646632504
  23. Lindemann, J., Stickstoffeliminierung in RotationsscheibenBiofilmreaktoren. PhD Thesis, Reihe 3 Verfahrenstechnik, Nr. 758, Duesseldorf: VDI-Verlag, ISBN 3-18-375803-2(2002)
  24. Bernet, N., Dangcong, P., Delgenes, J.P., and Moletta, R., 'Nitrification at low oxygen concentration in a biofilm reactor,' J. Environ. Eng., 127(3), 266-271(2001) https://doi.org/10.1061/(ASCE)0733-9372(2001)127:3(266)
  25. Chen, S.K., Juaw, C.K., and Cheng, S.S., 'Nitrification and denitrification of high-strength ammonium and nitrite wastewater with biofilm reactors,' Water Sci. Technol., 23(7-9), 1417-1425(1991)