Biological Hydrogen Production from Mixed Organic Waste of Food and Activated Sludge by Pre-treatment

음식물쓰레기와 전처리한 폐활성슬러지의 혼합비율에 따른 생물학적 수소생산

  • Lee, Jun-Cheol (Graduate School of Energy and Environmental, Seoul National University of Technology) ;
  • Kim, Jae-Hyung (Graduate School of Energy and Environmental, Seoul National University of Technology) ;
  • Choi, Kwang-Keun (Central research center Green and Global EnviTech Co. Ltd.) ;
  • Pak, Dae-Won (Graduate School of Energy and Environmental, Seoul National University of Technology)
  • 이준철 (서울산업대학교 에너지환경대학원) ;
  • 김재형 (서울산업대학교 에너지환경대학원) ;
  • 최광근 ((주)지앤지환경기술 중앙연구소) ;
  • 박대원 (서울산업대학교 에너지환경대학원)
  • Published : 2007.09.30

Abstract

In this study, Bio-hydrogen is produced from organic waste mixtures containing food waste and waste activated sludge (WAS). The effects of different operational factor on hydrogen production, including various solubilization methods for pretreatments of WAS, pH and different ratios of food waste and WAS, were investigated. The highest hydrogen production values are obtained as 4.3 mL $H_2/g$ $VS_{consumed}$ in the case of applying the mixed pre-treatments of alkali and ultrasonic. The pH value in bio-reactor increased from 4 to 8 after the ultrasonic treatment with alkali and the hydrogen yield touched its highest value in the pH range of 5.0 to 5.5. Similarly, the hydrogen production reached the level of 13.8 mL $H_2/g$ $VS_{consumed}$ using the same pre-treatment method from the mixture of food waste and WAS. The ratio of 2 : 1 produced a maximum amount of hydrogen of 5.0 L $H_2/L/d$. The amount of volatile fatty acids(VFAs) including acetate, propionate and butyrate, were also varied considerably. Propionate decreased consistently with rising of hydrogen while butyrate comparing to acetate relatively increased in the effluent.

본 연구는 대표적인 유기성 폐기물인 음식물쓰레기와 폐활성슬러지를 처리함과 동시에 수소를 생물학적인 방법으로 생성하기 위하여 운전인자인 가용화 방법, pH, VFAs 및 음식물쓰레기와 폐활성슬러지의 최적 혼합비율을 도출하고자 하였다. 폐활성슬러지의 수소 생성량을 높이기 위해 다양한 가용화 방법을 적용하여 그에 따른 수소 수율을 비교한 결과 알칼리와 초음파처리 한 병합처리에서 4.3 mL $H_2/g$ $VS_{consumed}$로 가장 높았으며, 음식물쓰레기와 가용화 된 폐활성슬러지를 혼합한 경우에도 병합처리 한 가용화 방법에서 수소 수율이 13.8 mL $H_2/g$ $VS_{consumed}$로 가장 높았다. 또한 pH는 $5.0\sim5.5$에서 운전시 가장 높은 수소 생성량을 보였으며, 음식물쓰레기와 가용화 된 폐활성슬러지의 최적 혼합비율은 2 : 1에서 수소 생성량이 5.0 L $H_2/L/d$로 가장 높았다. 생물학적 수소 생성이 많을수록 VFAs는 프로피온산의 농도가 낮았고, 부티르산이 아세트산보다 높은 비율로 생산되었다.

Keywords

References

  1. Momirlan, M. and Veziroglu, T., 'Recent directions of world hydrogen production,' Renew. Sust. Energ. Rev., 3, 219-231(1999) https://doi.org/10.1016/S1364-0321(98)00017-3
  2. Momirlan, M. and Veziroglu, T., 'Current status of hydrogen energy,' Renew. Sust. Energ. Rev., 6, 141-179(2002) https://doi.org/10.1016/S1364-0321(02)00004-7
  3. Kumar, A., Jain, S. R., Sharma, C. B., Joshi, A. P., and Kalia, V. C., 'Increased H2 production by immobilized microorganisms,' World J Microbiol. Biotechnol., 11, 156-159(1995) https://doi.org/10.1007/BF00704638
  4. KatoKa, N., Miya, A., and Kiriyama, K., 'Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria,' Water Sci. Technol., 36, 41-47(1997)
  5. Yakoi, H., Menda, Y., Hirose, J., Hayashi, S., and TaKassaki, Y., '$H_2$roduction by immobilized cellls of clostridium butyrium on porous glass beads,' Biotechnol., 11, 431-433(1997)
  6. Fascetti, E. and Todini, O., 'Rhodobater sphaeroides RV cultivation and hydrogen production in a one-and two-stage chemostat,' Appl. Microbiol. Biotechnol., 44, 300-305(1995) https://doi.org/10.1007/BF00169920
  7. Markov, T., Miura, Y., Fukatsu, K., Miyasaka, H., Ikuta, Y., Matsumoto, H., Hamasaki, A., Shioji, N., Mizoguchi, T., Yagi, K., and Meada, I., 'Hydrogen production by photosynthetic microorganisms,' Appl. Biochem. Biotechnol., 63, 577-584(1997) https://doi.org/10.1007/BF02920455
  8. Fedorov, A. S., Tsygankov, A. A., Rao, K. K., and Hall, D. O., 'Hydrogen photoproduction by Rhodobacter spaeroies immobilized on polyurethane foam,' Biotechnol. Lett., 20, 1009-1009(1998)
  9. Das, D. and T. N. Veziroglu., 'Hydrogen production by biological process : a survey of literature,' Int. J. Hydrogen Energ., 26, 13-28(2001)
  10. Hawkes, F. R., Dinsdale, R., Hawkes, D. L., and Hussy, I., 'Sustainable fermentative hydrogen production: challenges for process optimization,' Int. J. Hydrogen Energ., 27, 1339-1347(2002)
  11. Payot, R., Guedon, E., Cailliez, C., Gelhage, E., and Petitdemange, H., 'Metabolism of cellobiose by Clostridium celluolyticum growing in continuous culture evidence for decreased NADH reoxidation as a factor limiting growth,' Microbiology, 144, 375-384(1998) https://doi.org/10.1099/00221287-144-2-375
  12. Weemaes, M., Grootaerd. H., Simoens, F., and Verstraete, W., 'Anaerobic digestion of ozonized biosolids,' Water Res., 34, 2330-2336(2000) https://doi.org/10.1016/S0043-1354(99)00373-5
  13. Li, Y. Y. and Nokie, T., 'Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment,' Water Sci. Technol., 26, 857-866(1992) https://doi.org/10.2166/wst.1992.0466
  14. Lin, J. G., Ma, Y. S., and Hung, G. G., 'Alkaline hydrolysis of the sludge generated from high-strength, nitrogenous wastewater biological-treatment process,' Bioresource. Technol., 65, 35-42(1998)
  15. Tiehm, A., Nikel, K., Zelhom, M., and Meis, U., 'Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization,' Water Res., 35, 2003-2009(2001) https://doi.org/10.1016/S0043-1354(00)00468-1
  16. Zoetemeyer, F. J., Arnoldy, P., Cohen, A., and BoeIhouwer, C., 'Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process,' Water Res., 16, 312-321(1982)
  17. Yan, R. T., Zhu, C. X., Golemboski, C., and Chen, J. S., 'Expression of solvent-forming enzyme and onset of solvent production in batch cultures of Clostridium beijerinckii,' Appl. Environ. Microbial., 54, 642-648(1998)
  18. Ren, R., Wang, B., and Ma, F., 'Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process,' In proceeding of 68th annual Water Environmental Federal Conference, Miami, USA, 145-152(1995)
  19. Lee, Y. J., Mihahara, T., and Noike, T., 'Effect of pH on the microbial hydrogen fermentation,' In proceeding of the 6th IAWQ Asian-Pacific conference, Taipei, 215-220(1999)
  20. Cai, M., Liu, J., and Wei, Y., 'Enhanced biohydrogen production from sewage sludge with alkaline pretreatment,' Environ. Sci. Technol., 38, 3195-3202(2004) https://doi.org/10.1021/es0349204
  21. Stainier, F. Y., Ingrahan, J. L., Wheelis, M. L., and Painter, P. R., 'The microbial world,' 5th ed., Tokyo, Japan prentice-Hall,(1986)
  22. Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L., and Noike, T., 'Enhancement of hydrogen production from glucose by nitrogen gas sparging,' Bioresource Technol., 73, 59-65(2000) https://doi.org/10.1016/S0960-8524(99)00130-3
  23. Levin, D. B., Pitt, L., and Love, M., 'Biohydrogen production: prospects and limitations to practical application,' Int. J. Hydrogen Energ., 29, 173-185(2004) https://doi.org/10.1016/S0360-3199(03)00094-6
  24. Lay, J. J., Lee, Y. J., and Noike, T., 'Feasibility of biological hydrogen production from organic fraction of municipal solid waste,' Water Res., 33, 2579-2586(1999) https://doi.org/10.1016/S0043-1354(98)00483-7
  25. Lin, C. Y. and Chang, R. C., 'Hydrogen production during the anaerobic acidogenic convention of glucose,' J. Chem. Technol. Biotechnol., 74, 498-500(1999) https://doi.org/10.1002/(SICI)1097-4660(199906)74:6<498::AID-JCTB67>3.0.CO;2-D
  26. Vavilin, V. A., Rytow, S. V., and Lokshina, L. Y., 'Modeling hydrogen partical pressure change as a result of competition between the butyrate and propionate groups of acidogenic bacteria,' Bioresource Technol., 54, 171-177(1995) https://doi.org/10.1016/0960-8524(95)00127-1
  27. Fang, H. H. P. and Liu, H., 'Effect of pH on hydrogen production from glucose by a mixed culture,' Bioresource Technol., 82, 87-93(2002) https://doi.org/10.1016/S0960-8524(01)00110-9
  28. Lay, J. J., 'Modeling and optimization of anaerobic digested sludge converting starch to hydrogen,' Biotechnol Bioeng., 68, 269-278(2000) https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
  29. Fan, Y., Li, C., Lay, J. J., Hou, H., and Zhang, G., 'Optimizing of initial substrate and pH levels for germination of sporing hydrogen production anaerobes in cow dung compost,' Bioresource Technol., 91, 189-193(2004) https://doi.org/10.1016/S0960-8524(03)00175-5
  30. Kim, S. H., 'Continuous biohydrogen production by mesophilic anaerobic fermentation of organic solid waste,' A doctoral thesis, Department of Civil and Environment Engineering, Korea Advanced Institute of Science and Technology, 45-57(2005)
  31. Van Ginkel, S., Sung, S. and Lay, J. J., 'Biohydrogen production as a function of pH and substrate concentration,' Environ. Sci. Technol., 35, 4726-4730(2001) https://doi.org/10.1021/es001979r