Antimicrobial Activity of Medicinal Plants Against Bacillus subtilis Spore

  • Published : 2007.12.31

Abstract

Bacterial endospores, especially those of Bacillus and Clostridium genera, are the target of sterilization in various foods. We used Bacillus subtilis ATCC 6633 spores to screen novel antimicrobial substances against spores from medicinal plants. We collected 79 types of plant samples, comprising 42 types of herbs and spices and 37 types of medicinal plants used in traditional medicine in Korea and China. At a concentration of 1%(w/v), only 14 of the ethanol extracts exhibited antimicrobial activity against B. subtilis spores of at least 90%. Crude extracts of Torilis japonica, Gardenia jasminoides, Plantago asiatica, Fritllaria, and Arctium lappa showed particularly high sporicidal activities, reducing the spore count by about 99%. Consideration of several factors, including antimicrobial activity, extraction yields, and costs of raw materials, resulted in the selection of T. japonica, G. jasminoides, A. lappa, and Coriandrum sativum for the final screening of novel antimicrobial substances. Verification tests repeated 10 times over a 4-month period showed that the ethanol extract of T. japonica fruit reduced aerobic plate counts of B. subtilis spores the most, from $10^7$ to $10^4\;CFU/mL$ (99.9%) and with a standard deviation of 0.21%, indicating that this fruit is the most suitable for developing a novel antimicrobial substance for inactivating B. subtilis spores.

Keywords

References

  1. Atrih A, Foster SJ. Bacterial endospores the ultimate survivors. Int. Dairy J. 12: 217-223 (2002) https://doi.org/10.1016/S0958-6946(01)00157-1
  2. Russell AD. Bacterial spores and chemical sporicidal agents. Clin. Microbiol. Rev. 3: 99-119 (1990) https://doi.org/10.1128/CMR.3.2.99
  3. Setlow B, McGinnis KA, Ragkousi K, Setlow P. Effects of major spore-specific DNA binding proteins on Bacillus subtilis sporulation and spore properties. J. Bacteriol. 182: 6906-6912 (2000) https://doi.org/10.1128/JB.182.24.6906-6912.2000
  4. Driks A. Bacillus subtilis spore coat. Microbiol. Mol. Biol. R. 63: 1- 20 (1999)
  5. Catalano FA, Meador-Parton J, Popham DL, Driks A. Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation. J. Bacteriol. 183: 1645-1654 (2001) https://doi.org/10.1128/JB.183.5.1645-1654.2001
  6. Oh S, Moon MJ. Inactivation of Bacillus cereus spores by high hydrostatic pressure at different temperature. J. Food Protect. 66: 599-603 (2003) https://doi.org/10.4315/0362-028X-66.4.599
  7. Pol IE, Van Arendonk WGC, Mastwijk HC, Krommer J, Smid EJ, Moezelaar R. Sensitivities of germinating spores and carvacroladapted vegetative cells and spores of Bacillus cereus to nisin and pulsed-electric-field treatment. Appl. Environ. Microb. 67: 1693- 1699 (2001) https://doi.org/10.1128/AEM.67.4.1693-1699.2001
  8. Cho HY, Yousef AE, Sastry SK. Kinetics of inactivation of Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating. Biotechnol. Bioeng. 62: 368-372 (1999) https://doi.org/10.1002/(SICI)1097-0290(19990205)62:3<368::AID-BIT14>3.0.CO;2-0
  9. Driks A. Overview: Development in bacteria; spore formation in Bacillus subtilis. Cell. Mol. Life Sci. 59: 389-391 (2002) https://doi.org/10.1007/s00018-002-8430-x
  10. Chaibi A, Ababouch L, Busta FF. Inhibition of bacterial spores and vegetative cells by glycerides. J. Food Protect. 59: 716-722 (1996) https://doi.org/10.4315/0362-028X-59.7.716
  11. Banks JG, Morga S, Stringer MF. Inhibition of heated Bacillus spores by combinations of potassium sorbate, sodium benzoate, pH, and organic acids. Lebensm.-Wiss. Technol. 21: 250-255 (1988)
  12. Chandler DP, Brown J, Bruckner-Lee CJ, Olson L, Posakony GJ, Stults JR, Valentine NB, Bond LJ. Continuous spore disruption using radially focused, high-frequency ultrasound. Anal. Chem. 73: 3784-3789 (2001) https://doi.org/10.1021/ac010264j
  13. Deng FX. Antimicrobial effects of melliana leaves. Food Sci. China 17: 47-50 (1996)
  14. An B-J, Son A-R, Lee J-T. Studies on the antimicrobial activity of extracts of Korean medicinal plants. J. Life Res. Ind. 4: 46-58 (1999)
  15. Choi M-Y, Choi E-J, Lee E, Rhim T-J, Cha B-C, Park H-J. Antimicrobial activities of pine needle (Pinus densiflora Seib. et Zucc.) extract. Korean J. Microbiol. Biotechnol. 25: 293-297 (1997)
  16. Kim H-S, Shin J-O. Isolation and antimicrobial activity of Xanthium strumarium L. extract. Korean J. Appl. Microbiol. Biotechnol. 25: 183-188 (1997)
  17. Kida N, Mochizuki Y, Taguchi F. An effective sporicidal reagent against Bacillus subtilis spores. Microbiol. Immunol. 47: 279-283 (2003) https://doi.org/10.1111/j.1348-0421.2003.tb03396.x
  18. Hamouda T, Shin AY, Baker Jr JR. A rapid staining technique for the detection of the initiation of germination of bacterial spores. Lett. Appl. Microbiol. 34: 86-90 (2002) https://doi.org/10.1046/j.1472-765x.2002.01047.x
  19. Lee MC, Ryu KS. Studies of the constituents in the fruits of Torilis japonica DC. Bull. KH Pharm. Sci. 6: 61-67 (1978)
  20. Lee EB, Kim SM, Kim TH. Anti-inflammatory activities of Torilis japonica fruit. Korean J. Pharmacogn. 29: 384-390 (1998)
  21. Kim MS, Lee YM, Moon E-J, Kim SE, Lee JJ, Kim K-W. Antiangiogenic activity of torilin, a sesquiterpene compound isolated from Torilis japonica. Int. J. Cancer 87: 269-275 (2000) https://doi.org/10.1002/1097-0215(20000715)87:2<269::AID-IJC19>3.0.CO;2-W
  22. Kang SS, Lee EB, Kim TH, Kim KR, Jung JH. The NMR assignments of torilin from Torilis japonica. Arch. Pharm. Res. 17: 284-286 (1994) https://doi.org/10.1007/BF02980463
  23. Ryu J-H, Jeong YS. A new guaiane type sesquiterpene from Torilis japonica. Arch. Pharm. Res. 24: 532-535 (2001) https://doi.org/10.1007/BF02975160