Characterization of Single Stranded DNA-Dependent ATPase Activities of Deinococcus radiodurans RecA Protein

Deinococcus radiodurans RecA 단백질의 외가닥 DNA-의존성 ATPase 활성 분석

  • Kim, Jong-Il (Department of Food and Microbial Technology, Seoul Women's University)
  • 김종일 (서울여자대학교 자연과학대학 식품과학부)
  • Published : 2007.12.30

Abstract

The RecA protein of Deinococcus radiodurans is essential for the extreme radiation resistance of this organism. The central steps involved in recombinational DNA repair require DNA-dependent ATP hydrolysis by recA protein. Key feature of RecA protein-mediated activities is the interactions with ssDNA and dsDNA. The ssDNA is the site where RecA protein filament formation nucleates and where initiation of DNA strand exchange takes place. The effect of sequence heterogeneity of ssDNA was examined in this experiment. The rate of homopolymeric synthetic ssDNA-dependent ATP hydrolysis was constant or nearly so over a broader range of pHs. For poly(dT)-dependent ATP or dATP hydrolysis, rates were generally faster, with a broader optimum between pH 7.0 and 8.0. Activities of RecA protein were affected by the ionic environment. The ATPase activity was shown to have different sensitivity to anionic species. The presence of glutamate seemed to slimulate the hydrolytic activity. Dr RecA protein was shown to require $Mg^{2+}$ ion greater than 2 mM for binding to etheno ssDNA and the binding stoichiometry of 3 nucleotide for RecA protein monomer.

Deinococcus radiodurans recA는 이 미생물의 방사선 저항성을 나타내는 표현형에 필수적이며 재조합성 DNA 수선 과정에 관여한다. 이 과정에서 RecA 단백질은DNA와 결합하여 반응의 활성 종인 RecA nucleoprotein 필라멘트를 형성한다. DNA-의존성 ATPase 활성과 함께, RecA 단배질의 외가닥 DNA 혹은 이중가닥 DNA와의 상호작용은 RecA 단백질이 관여하는 반응의 중심과정으로 이에 관한 분석을 시도하였다. D. radiodurans RecA 단배질은 DNA에 결합한 DNA-단백질 복합체만이 ATPase 활성을 나타내므로, ATP (혹은 dATP) 가수분해를 측정함으로써 RecA와 외가닥 DNA와의 상호작용 정도를 분석하였다. D. radiodurans RecA 단백질은 외가닥 DNA의 염기 구성의 이질성에 영향을 받았으며, homopolymer인 poly(dT)와의 상호작용에서 가장 높은 가수분해 활성을 보였다. Homopolymer인 합성 DNA-의존성 ATP 및 dATP의 가수분해는 pH 6.0과 9.0의 범위에서 다소 일정한속도로 일어났으며 최적 pH는 7.0과 7.5 사이였다. 외가닥 DNA-의존성 ATPase 활성은 염의 존재에 영향을 받아 KCl이 존재하면 다소 억제되나, K-glutamate가 존재하면 오히려 촉진되었다. RecA 단백질과 외가닥 DNA의 상호작용을 ATP 가수분해로 분석하였을 때 2 mM 이상의 magnesium 이온이 DNA 결합반응에 필요하였으며, 비교적 넓은 범위의 pH에서 외가닥 DNA와의 결합반응이 일어나며, 이러한 결합반응은 당량적인 비(1:3, RecA protein: DNA nucleotide)로 일어났다.

Keywords

References

  1. Bedale, W.A. and M.M. Cox. 1996. Evidence for the coupling of ATP hydrolysis to the final (extension) phase of RecA proteinmediated DNA strand exchange. J. Biol. Chem. 271, 5725-5732 https://doi.org/10.1074/jbc.271.10.5725
  2. Carroll, J.D., M.J. Daly, and K.W. Minton. 1996. Expression of RecA in Deinococcus radiodurans. J. Bacteriol. 178, 130-135 https://doi.org/10.1128/jb.178.1.130-135.1996
  3. Cox, M.M. 1999. Recombinational DNA repair in bacteria and the RecA protein. Prog. Nucleic Acids Res. Mol. Biol. 63, 310-366
  4. Daly, M.J., L. Ouyang, P. Fuchs, and K.W. Minton. 1994. In vivo damage and RecA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 176, 3508-3517 https://doi.org/10.1128/jb.176.12.3508-3517.1994
  5. Karlin, S. and J. Mrazek. 2001. Predicted highly expressed and putative alien genes of Deinococcus radiodurans and implications for resistance to ionizing radiation damage. Proc. Natl. Acad. Sci. USA 98, 5240-5245
  6. Kim, J.I., A.K. Sharma, S.N. Abbott, E.A. Wood, D.W. Dwyer, A. Jambura, K.W. Minton, R.B. Inman, M.J. Daly, and M.M. Cox. 2002. RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans: Expression, purification, and characterization. J. Bacteriol. 184, 1649-1660 https://doi.org/10.1128/JB.184.6.1649-1660.2002
  7. Lusetti, S.L. and M.M. Cox. 2002. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Ann. Rev. Biochem. 71, 71-100 https://doi.org/10.1146/annurev.biochem.71.083101.133940
  8. Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44-79 https://doi.org/10.1128/MMBR.65.1.44-79.2001
  9. Menetski, J.P. and S.C. Kowalczykowski. 1985. Interaction of RecA protein with single-stranded DNA. J. Mol. Biol. 181, 281-295 https://doi.org/10.1016/0022-2836(85)90092-0
  10. Minton, K.W. 1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13, 9-15 https://doi.org/10.1111/j.1365-2958.1994.tb00397.x
  11. Minton, K.W. 1996. Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat. Res. 363, 1-7 https://doi.org/10.1016/0921-8777(95)00014-3
  12. Richmond, R.C., R. Sridhar, and M.J. Daly. 1999. Physicochemical survival pattern for the radiophile Deinococcus radiodurans: a polyextremophile model for life on Mars. SPIE 3755, 210-222
  13. Venkateswaran, A., S.C. McFarlan, D. Ghosal, K.W. Minton, A. Vasilenko, K. Makarova, L.P. Wackett, and M.J. Daly. 2000. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66, 2620-2626 https://doi.org/10.1128/AEM.66.6.2620-2626.2000