Isolation and Characterization of an Alkaline Protease Produced by Bacillus subtilis JK-1

알칼리성 Pretease를 생산하는 Bacillus subtilis JK-1의 분리 동정 및 효소 특성

  • Kim, Ji-Yeon (Graduate School of Molecular & Biomedical Technology, College of General Education, Inje University)
  • Published : 2007.12.30

Abstract

A bacterium producing the alkaline pretense was isolated from Chungkookjoug, and was identified as Bacillus subtilis JK-1 based on morphological, physiological and biochemical characteristics, as well as phylogenetic analysis using 16S rRNA gene sequence. The optimum pH and temperature of the pretense activity were pH 9.0 and $55^{\circ}C$, respectively. This enzyme was stable at the temperatures $40{\sim}80^{\circ}C$. The maximum alkaline pretense production was obtained when 1.0% (w/v) xylose, 1.0% (w/v) yeast extract and 0.3% (w/v) $CuSO_4$ were used as carbon source, nitrogen source and mineral source. Under the optimal condition, growth of the isolate was reached at stationary phase after 12 hr followed by incubation, the alkaline pretense production reached a maximum level with $16{\sim}20$ hr cultivation.

청국장으로부터 알칼리성 pretense 생성이 우수한 균주를 분리한 후 형태적, 생리.생화학적 특성 및 16S rRNA 유전자 염기서열을 통한 계통분석을 이용하여 동정을 실시한 결과 Bacillus subtilis JK-1으로 판명되었다. B. subtilis JK-1이 생산하는 pretense의 최적 활성 pH와 온도는 각각 9.0과 $55^{\circ}C$이었으며, $40{\sim}80^{\circ}C$의 sh도에서 안정하였다. 본 균주는 배지 중에 탄소원과 질소원, 무기염으로 1.0% (w/v) xylose와 1.0% (w/v) yeast extract, 0.3% (w/v) $CuSO_4$를 사통하였을 경우 최대의 알칼리성 protease 생산성을 나타내었다. B. subtilis JK-1의 생육은 배양 후 12시간만에 최대 성장을 나타냈으며, 효소 활성은 8시간부터 급격히 증가하여 $16{\sim}20$시간에 최대 활성을 나타내었다.

Keywords

References

  1. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Banerjee, U.C., R.K. Sani, W. Azmi, and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35, 213-219 https://doi.org/10.1016/S0032-9592(99)00053-9
  3. Banika, R.M. and M. Prakash. 2004. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol. Res. 159, 135-140 https://doi.org/10.1016/j.micres.2004.01.002
  4. Benson, D.A., M.S. Boguski, D.J. Lipman, J. Ostell, B.F. Ouellette, B.A. Rapp, and D.L. Wheeler. 1999. GenBank. Nucleic Acids Res. 27, 12-17 https://doi.org/10.1093/nar/27.1.12
  5. Claus, D. and R.C.W. Berkeley. 1986. Genus Bacillus, p. 1105- 1139. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (ed.), Bergey's manual of systematic bacteriology, Vol. 2. The Williams & Wilkins Co., Baltimore, Maryland, USA
  6. Cowan, D. 1983. Industrial applications: Proteins, pp. 353-374. In T. Godfrey and S. West (ed.), Industrial enzymology: the application of enzyme in industry. The Nature Press, New York, USA
  7. Dhandapani, R. and R. Vijayaragvan. 1994. Production of thermophilic, extracellular alkaline protease by Bacillus stearothermophilus AP-4. J. Microbiol. Biotechnol. 10, 33-35 https://doi.org/10.1007/BF00357559
  8. Giesecke, U.E., G. Bierbaum, H. Rudde, U. Spohn, and C. Wandrey. 1991. Production of alkaline protease with Bacillus licheniformis in a controlled fed-batch process. Appl. Microbiol. Biotechnol. 35, 720-724
  9. Godfrey, T. and S. West. 2001. Industrial enzymology, 2nd ed. Macmillan Publisher Inc., New York, USA
  10. Gupta, R., Q.K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 13-32
  11. Hagihara, B., H. Matsubara, M. Nakai, and K. Okunuki. 1958. Crystalline bacterial proteinase I. Preparation of crystalline proteinase of B. subtilis. J. Biochem. 45, 185-194 https://doi.org/10.1093/oxfordjournals.jbchem.a126856
  12. Hartley, B.S. 1960. Proteolytic enzymes. Annu. Rev. Biochem. 29, 45-72 https://doi.org/10.1146/annurev.bi.29.070160.000401
  13. Horikoshi, K. 1971. Production of alkaline enzymes by alkalophilic microorganisms, Part I, alkaline protease produced by Bacillus No. 221. Agric. Biol. Chem. 36, 1407-1414
  14. Kim, K.P., N.H. Kim, C.H. Rhee, C.J. Woo, and D.H. Bae. 2002. Isolation and characterization of protease producing bacteria from soil. J. Korean Soc. Food Sci. Nutr. 31, 754-759 https://doi.org/10.3746/jkfn.2002.31.5.754
  15. Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115-175. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. The John Wiley & Sons, New York, USA
  16. Manachini, P.L., M.G. Fortima, and C. Parini. 1988. Thermostable alkaline protease produced by Bacillus thermoruber a new species of Bacillus. Appl. Microbiol. Biotechnol. 28, 409-413 https://doi.org/10.1007/BF00268205
  17. Massaki, Y., S. Kazuo, and M. Mitsuo. 1984. Purification and properties of acid protease from Monascus sp. No. 3403. Agric. Biol. Chem. 48, 1637-1639 https://doi.org/10.1271/bbb1961.48.1637
  18. Panouillé, M., J.F. Thibault, and E. Bonnin. 2006. Cellulase and protease preparations can extract pectins from various plant byproducts. J. Agric. Food Chem. 54, 8926-8935 https://doi.org/10.1021/jf0617824
  19. Rao, M.B., A.M. Tanksale, M.S. Ghatge, and V.V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635
  20. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4, 406-425
  21. Shin, S.U., M.A. Kwon, M.S. Jang, K.J. Jung, and H.J. Seo. 2004. Production conditions of alkaline protease by Bacillus megaterium. Korean J. Food Preservation 11, 227-232
  22. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876