Trophic State Index (TSI) and Empirical Models, Based on Water Quality Parameters, in Korean Reservoirs

우리나라 대형 인공호에서 영양상태 평가 및 수질 변수를 이용한 경험적 모델 구축

  • Park, Hee-Jung (School of Bioscience and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (School of Bioscience and Biotechnology, Chungnam National University)
  • Published : 2007.03.30

Abstract

The purpose of this study was to evaluate trophic conditions of various Korean reservoirs using Trophic State Index (TSI) and predict the reservoir conditions by empirical models. The water quality dataset (2000, 2001) used here were obtained from the Ministry of Environment, Korea. The water quality, based on multi-parameters of dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), suspended solid (SS), Secchi depth (SD), chlorophyll-${\alpha}$ (CHL), and conductivity largely varied depending on the sampling watersheds and seasons. In general, trophic conditions declined along the longitudinal axis of headwater-to-the dam and the largest seasonal variations occurred during the summer monsoon of July-August. Major inputs of TP occurred during the monsoon (r=0.656, p=0.002) and this pattern was similar to solid dynamics of SS (r=0.678, p<0.001). Trophic parameters including CHL, TP, SD, and TN were employed to evaluate how the water systems varies with season. Trophic State Index (TSI, Carlson, 1977), based on TSI (CHL), TSI (TP), and TSI (SD), ranged from mesotrophic to eutrophic. However, the trophic state, based on TSI (TN), indicated eutrophic-hypereutrophic conditions in the entire reservoirs, regardless of the seasons, indicating a N-rich system. Overall, nutrient data showed that phosphorus was a primary factor regulating the trophic state. The relationships between CHL (eutrophication index) vs. trophic parameters (TN, TP, and SD) were analysed to develop empirical models which can predict the trophic status. Regression analyses of log-transformed seasonal CHL against TP showed that the value of $R^2$ was 0.31 (p=0.017) in the premonsoon but was 0.69 (p<0.001) during the postmonsoon, indicating a greater algal response to the phosphorus during the postmonsoon. In contrast, SD had reverse relation with TP, CHL during all season. TN had weak relations with CHL during all seasons. Overall, data suggest that TP seems to be a good predictor for algal biomass, estimated by CHL, as shown in the empirical models.

본 연구의 목적은 부영양화도 지수(TSI)를 이용하여 우리나라 호소의 영양 상태를 평가하고, 경험적 모델(Empirical model)에 의한 호소의 상태를 예측하기 위한 것이다. 연구에 사용된 수질 자료(2000, 2001)는 환경부 DB시스템에서 획득하였으며 이용된 변수는 용존산소(DO), 생물학적 산소 요구량(BOD), 화학적 산소 요구량(COD), 총인 (TP), 총질소 (TN), 부유물질 (SS), 투명도(SD), 엽록소-${\alpha}$ (CHL), 전기전도도 (Cond.)였다. 이런 수질 변수의 농도는 측정된 수계 및 계절에 따라 변이양상을 보였다. 일반적으로, 영양상태(Trophic state)는 상류로부터 댐으로 감소하는 경향을 보였으며, 계절적 변이는 여름 장마기 (7${\sim}$8월)동안 크게 발생했다. TP의 주된 유입은 장마기 (r=0.656, p=0.002)동안 일어났고, 이런 현상은 SS(r=0.678, p<0.001)와 유사한 경향을 보였다. CHL, TP, SD 및 TN을 포함한 수질변수는 계절에 따른 수계내의 영양상태를 평가하는 방법에 적용되었다. Carlson(1977)의 부영양화도지수(TSI)에 기초한 수계 내 TSI(CHL), TSI(TP)및 TSI(SD)는 중영양-부영양 상태를 보였다. 한편, TSI(TN)은 계절에 관계없이 전체 호소 내에서 TN농도가 풍부한 부영양-과영양 상태를 보였다. 따라서, 인은 호소 내 영양 상태를 조절하는 주요인자가 된다. CHL와 다른 수질 변수(TP, TN,그리고 SD)사이의 관계를 분석하기 위한 경험적 모델(Empirical model)이 개발되었다. 로그-전환 회귀분석에서 CHL-TP는 장마 전기 $R^2$ 값이 031(p=0.017)이었으나 장마 후기에는 0.69(p<0.017)로 장마 후기 인이 조류 성장에 큰 영향을 미치는 것으로 나타났다. 이와 대조적으로, SD는 TP, CHL증가에 대해 감소하는 경향을 보였고 TN은 모든 기간 동안 CHL와 약한 관계를 가졌다. 결과적으로, 경험적 모델(Empirical model)이 제시하듯이 TP는 CHL을 예측하는 핵심 인자로 사료되었다.

Keywords

References

  1. 건설교통부, 2001, 수자원장기종합계획, pp. 64-65
  2. 김미숙, 정영륜, 서의훈, 송원섭. 2002. 낙동강 부영양화와 수질환경요인의 통계적 분석. Algae 17(2): 105-115 https://doi.org/10.4490/ALGAE.2002.17.2.105
  3. 김범철, 김윤희. 2004. 아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용. 육수지. 37(2): 205-212
  4. 김용재. 2004. 낙동강 중.하류의 식물플랑크톤 군집의 월 변화. Algae 19(4): 329-337 https://doi.org/10.4490/ALGAE.2004.19.4.329
  5. 김재윤. 2003. 총인부하량을 이용한 인공호의 부영양화 평가. 한국환경과학회지. 12(7): 689-695
  6. 김호섭, 황순진. 2004. 육수학적 특성에 따른 국내 저수지의 부영양화 유형분석-엽록소 a와 수심을 중심으로. 육수지. 37(2): 213-226
  7. 농림부 농업기반공사. 2001. 농업용수 수질측정망 조사 보고서
  8. 서동일. 1998. 대청호의 성층현상에 의한 부영양화 특성과 수질관리 방안에 관한 연구. 대한환경공학회지. 20(9): 1219-1234
  9. 신재기. 1998. 낙동강 부영양화에 따른 담수조류의 생태학적 연구. 인제대학교 박사학위논문. p. 202
  10. 신재기, 조경제. 2000. 생물검정에 의한 남조류 Microcystis가 수질에 미치는 영향. 한국환경과학회지. 9(3): 267-273
  11. 신재기, 조주래, 황순진, 조경제. 2000. 경안천-팔당호의 부영양화와 수질오염 특성. 육수지. 33(4): 389-394
  12. 안광국, 신인철. 2005. 산간 계류성 하천의 계절적 수질변동에 대한 몬순강우의 영향. 육수지. 38(1): 54-62
  13. 유전재, 김종구, 권태연, 이석모. 1999. 금강의 부영양화 현상에 관한 연구. 한국환경과학회지. 8(2): 155-160
  14. 이혜원, 안광국, 박석순. 2002. 소양호 표층수 수질의 연별 추이 및 상.하류 이질성 분석. 육수지. 53(1): 36-44
  15. 임창수, 신재기, 조경제. 2000. 금강 중.하류에서 오염양상과 수질평가. 육수지. 33(1): 51-60
  16. 허무명, 김범철, 박원규. 낙동강 수계의 계절별 인, 질소, Chl. a와 영양염류 농도 분포. pp. 103-110
  17. 한국수자원공사. 2006. http://www.kowaco.of.kr
  18. 환경부. 2006. http://water.nier.go.kr
  19. An, K-G. 2000. Dynamic change of dissolved oxygen during summer monsoon. Korean J. Limnol. 33(3): 213-221
  20. An, K-G. 2000. Monsoon inflow as a major source of in-lake phosphorus. Korean J. Limnol. 33(3): 222-229
  21. An, K-G. 2000. The impact of monsoon on seasonal variability of basin morphology and hydrology. Korean J. Limnol. 33(4): 342-349
  22. An, K-G. 2000. An influence of point-source and flow events on inorganic nitrogen fractions in a large artificial reservoir. Korean J. Limnol. 33(4): 350-357
  23. An, K-G. and J.R. Jones. 2000. Temporal and spatial patterns in ionic salinity and suspended solids in a reservoir influenced by the Asian monsoon. Hydrobiologia 436: 179-189 https://doi.org/10.1023/A:1026578117878
  24. An, K-G. and J.R. Jones. 2000a. Significance of an intensity of the Asian monsoon on reservoir functional changes along longitudinal gradients (in press). Freshwater Biology
  25. An, K-G. and J.R. Jones. 2000b. Factors regulating bluegreen dominance in a reservoir influenced by the Asian monsoon. Hydrobiologia 432: 37-48 https://doi.org/10.1023/A:1004077220519
  26. An, K-G. 2001. Hydrological significance on interannual variability of cations, anions, and conductivity in a large reservoir ecosystem. Korean J. Limnol. 34(1): 1-8
  27. An, K-G. and J.R. Jones. 2002. Reservoir response to the Asian monsoon with an emphasis on longitudinal gradients. Journal of Freshwater Ecology 17(1): 151-160 https://doi.org/10.1080/02705060.2002.9663878
  28. An, K-G. and S.S. Park. 2002. Indirect influence of the summer monsoon on chlorophyll-a total phosphorus models in reservoirs: a case study. Ecological Modelling 152(2-3): 191-203 https://doi.org/10.1016/S0304-3800(02)00020-0
  29. An, K-G. and S.S. Park. 2002. In situ experimental evidence of phosphorus limitation on algal growth in a lake ecosystem. Journal of Environmental Science and Health A 37(5): 913-924 https://doi.org/10.1081/ESE-120003597
  30. An, K-G. and D.S. Kim. 2003. Response of lake water quality to nutrient inputs from various streams and in-lake fishfarms. Water, Air, and Soil Pollution 149(1-4): 27-49 https://doi.org/10.1023/A:1025606205096
  31. An, K-G., S.S. Park, K.-H Ahn and C.G. Urchin. 2003. Dynamics of nitrogen, phosphorus, algal biomass, and suspended solids in an artificial lentic ecosystem and significant implications of regional hydrology on trophic status. Journal of Environmental Biology 24(1): 29-38
  32. An, K-G. and S.S. Park. 2003. Influence of seasonal monsoon on the trophic state deviation in an Asian reservoir. Water, Air, and Soil Pollution. 145: 267-287 https://doi.org/10.1023/A:1023688819724
  33. Canfield, D.J. and R.W. Bachmann. 1981. Prediction of total phosphorus concentration, chlorophyll-a and 8ecchi depths in natural and artificial lakes. Can. J. Fish Aquat. Sci. 38: 414-423 https://doi.org/10.1139/f81-058
  34. Carlson, R.E. 1997. A trophic state index for lake. Limnology Oceanogr 22: 361-369
  35. Dillon, P.J. and F.H. Rigler. 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767-781 https://doi.org/10.4319/lo.1974.19.5.0767
  36. Dodds, W.K., J.R. Jones and E.B. Welch. 1998. 8uggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Resources 32(5): 1455-1462
  37. Ford, D.E. 1990. Reservoir transport process. p. 15-41. In: Reservoir Limnology: ecological perspectives (Thornton, K.W. et al. eds.), John Wiley & Sons, New work
  38. Forsberg, C. and S.O. Ryding. 1980. Eutrophication parameters and trophic state in 30 Swedish waste receiving lakes. Arch. Hydrobiologia 89: 189-207
  39. Grim, N.B. and S.G. Fisher. 1986. Nitrogen limitation in a Sonoran desert stream. J. N. Am. Benthol. Soc. 5: 2-15 https://doi.org/10.2307/1467743
  40. Havens, K.E. 1994. Seasonal and spatial variation in nutrient limitation in a shallow sub-tropical lake (lake Okeechobee, FL) as evidenced by trophic state index deviations. Arch. Hydrobiologia 131: 39-53
  41. Hoyer, M.W. and J.R. Jones. 1983. Factors affecting the relation between phosphorus and chlorophyll a in midwestern reservoirs. Can. J. Fish Aquat. Sci. 40: 192-541 https://doi.org/10.1139/f83-029
  42. Jones, J.R., M.F. Knowlton and K-G. An. 1997. Developing a paradigm to study and model the eutrophication process in Korean reservoirs. Korean J. Limnol. Special Issue 82: 1-9
  43. Jones, J.R., M.F. Knowlton and K-G. An. 2003. Trophic state, seasonal patterns and empirical models in South Korean Reservoirs. Lake and Reservoir Management 19(1): 64-78 https://doi.org/10.1080/07438140309353991
  44. Kratzer, C.R. and P.L. Brezonik. 1981. A carlson-type trophic state in dex for nitrogen in Florida lakes. Water Resources Bullentin 17: 713-717 https://doi.org/10.1111/j.1752-1688.1981.tb01282.x
  45. Kimmel, B.L. 1990. Reservoir Primary Production. p.133-199. In: Reservoir Limnology: ecological perspectives (Thornton, KW. et al., eds.), Wiley Interscience
  46. Nurnberg, G.K. 1996. Trophic state of clear and collored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reservoir Management 12: 432-447 https://doi.org/10.1080/07438149609354283
  47. OECD. 1982. Eutrophication of Waters: Monitoring assessment and Control OECD. p. 154. Paris
  48. Perkins, B. and J.R. Jones. 1994. Temporal variability in a midwestern stream during spring. Verh. Internat. Verein. Limnol. 25: 1471-1476
  49. Sakamoto, M. 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiologia 62: 1-28
  50. Soballe, D.M., Bachmann, R.W. 1984. Influence of reservoir transit on riverine algal transport and abundance. Can. J. Fish Aquat. Sci. 41: 1803-1813 https://doi.org/10.1139/f84-221
  51. Thornton, K.W. 1990. Perspectives on reservoir limnology. p. 1-4. In: Reservoir Limnology: ecological perspectives (Thornton, K.W. et al, eds.). John Wiley & Sons, New work
  52. U. S. EPA. 1976. Water quality criteria research of the U.S. Environmental protection agency. Proceeding of an EPA sponsord symposium, EPA-600(3-76-079): 185
  53. Vollenweider, R.A. 1968. The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Tech, Rep. DECD. Paris. DAS/CSI/68. 27: 1-182
  54. Vollenweider and Kerekes. 1980. The loading concept as bases for controlling philosophy and preliminary results of the OECD programme on eutrophication. Prog. Wat. Tech. 12: 5-38
  55. Wetzel, R.G. 1990. Reservoir ecosystems: conclusions and speculations. p. 227-238. In: Reservoir Limnology: Ecological perspectives (Thornton, K.W. et al., eds.). John Wiley & Sons, New work