Photosynthetic Characteristics and Primary Production by Phytoplankton with Different Water Quality of Influent in Open Waters of Constructed Wetlands for Water Treatment

수질정화용 인공습지 개방수역에서 유입수질에 따른 식물플랑크톤의 광합성특성 및 유기물생산력

  • Choi, Kwang-Soon (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Hwang, Gil-Son (Aquatic Environment Research Institute) ;
  • Kim, Dong-Sub (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Kim, Sea-Won (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Kim, Ho-Joon (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Joh, Seong-Ju (Kumoh National Institute of Technology, Department of Environmental Engineering) ;
  • Park, Je-Chul (Kumoh National Institute of Technology, Department of Environmental Engineering)
  • 최광순 (한국수자원공사 시화호환경연구소) ;
  • 황길순 (한국수자원공사 수환경연구소) ;
  • 김동섭 (한국수자원공사 시화호환경연구소) ;
  • 김세원 (한국수자원공사 시화호환경연구소) ;
  • 김호준 (한국수자원공사 시화호환경연구소) ;
  • 조성주 (금오공과대학교 환경공학과) ;
  • 박제철 (금오공과대학교 환경공학과)
  • Published : 2007.03.30

Abstract

The photosynthetic characteristics and primary production by phytoplankton in open waters of two wetlands (the Banwol and the Donghwa wetland) of Sihwa Constructed Wetland with different water chemistry were investigated to provide the information for the wetland management considering the water treatment efficiency. During the study period (from March to October, 2005) the primary productivity in open waters ranged from 481 to 11,275 mgC $m^{-2}$ $day^{-1}$, which is very high compared with the eutrophic level of 600mgC $m^{-2}$ $day^{-1}$. From the analysis of the photosynthesis-irradiance (P-I) model parameters, the photosynthetic characteristics may be affected by different concentration and ratio of nutrient (N and P) between two wetlands. Assimilation number (AN) was higher in the Donghwa wetland (average AN: 8.5gC $gChl^{-1}$ $hr^{-1}$) with high P and low N/P ratio than the Banwol wetland (average AN: 5.8gC $gChl^{-1}$ $hr^{-1}$) with high N and high N/P ratio. This result indicates that AN may be concerned with phosphorus than nitrogen and low NIP ratio. Positive correlation (R=0.81) was observed between the initial slope and AN, implying that AN was high in case of phytoplankton having more active photosynthesis ability under low light. On the other hand, maximum photosynthesis (Pmax) was related positively with chlorophyll a concentration showing correlation coefficient of 0.47. In this study, considering the high primary production through phytoplankton photosynthesis in open waters of Sihwa Constructed Wetland, the produced organic matter by phytoplankton may affect the water quality within wetland and its efficiency of water treatment. Also, the photosynthetic characteristics may be affected by different nutrient enrichment (especially phosphorus) of wetlands. This study suggests that the production by phytoplankton and its characteristics in open water of constructed wetland for water treatment should be considered to improve the removal efficiency of organic matter.

본 연구는 국내 최대의 수질정화용 인공습지인 시화호 인공습지의 개방수역(open water)에서 식물플랑크톤에 의한 광합성특성 및 유기물생산력을 조사 평가하여 효율적인 습지관리를 위해 open water관리방안의 기초자료를 제공하기 위함이다. 식물플랑크톤의 광합성특성 및 1차 생산력은 유입수의 수질특성과 체류시간이 다른 반월천습지와 동화천습지의 open water에서 조사되었다. 조사기간 동안 시화호 인공습지내 5개 open water에서 식물플랑크톤에 의한 1차 생산력은 $481{\sim}11,275mgC\;m^{-2}\;day^{-1}$의 범위로 연중 부영양화 수준을 보였고 계절과 지점에 따라 변동이 컸다. 시화호 인공습지에서 식물플랑크톤의 P-I curve 모델계수를 통한 광합성특성은 두 습지로 유입되는 유입수의 상반되는 수질특성(인과 질소 농도)에 크게 영향을 받는 것으로 나타났다. 최대광합성속도 (Pmax)는 $42{\times}1,014 mgC\;m^{-3}\;hr^{-1}$로 chi. ${\alpha}$ 농도와 양의 상관(R=0.47)을 보였다. 식물플랑크톤의 광합성효율을 나타내는 동화계수(AN)두 습지 모두 고습지와 저습지의 AN값의 차이를 보이지 않았지만 동화천습지의 AN값이 평균 8.5gC $gChl^{-1}\;hr^{-1}$로 반월천습지의 평균 5.8gC $gChl^{-1}\;hr^{-1}$보다 높은 값을 보여 인 농도가 높은 동화천습지에서 식물플랑크톤의 광합성효율이 큰 것으로 나타났다. 두 하천의 수질특성으로부터 식물플랑크톤의 광합성효율은 질소보다 인 농도 그리고 작은 TN/TP와 관련이 있는 것으로 사료된다. 낮은 광도에 대한 광합성능력을 나타내는 초기기울기와 동화계수 사이에는 높은 양의 상관(R=0.81)을 보인 것으로 보아, 낮은 광조건에서 광합성능력이 큰 식물플랑크톤이 광합성효율도 큰 것으로 나타났다. 본 연구에서 시화호 인공습지의 open water에서 식물플랑크톤에 의한 유기물생산이 매우 높은 것으로 보아 식물플랑크톤이 습지의 수질 및 수처리효율에 영향을 미칠 것을 판단된다. 습지의 수처리효율을 향상시키기 위해서는 체류시간을 짧게 해주거나 open water의 면적을 줄여 식물플랑크톤의 증식을 억제하거나 또는 증식한 식물플랑크톤이 습지외부로 유출되지 않도록 하는 관리방안이 필요할 것으로 본다.

Keywords

References

  1. 김동섭, 김범철. 1990. 팔당호의 일차생산, 육수지 23(2): 167-179
  2. 김동섭, Y. Watanabe, 김범철. 1994. 근자외선(UV-A)에 의한 식물플랑크톤의 광합성저해, 육수지 27(2): 145-153
  3. 농업기반공사. 2004. 농업용수 수질개선을 위한 인공습지 설계.관리 요령
  4. 산업기지개발공사. 1978. 4개댐 저수지수질 조사 보고서
  5. 이진애, 조경제, 권오섭, 정익교, 문병용. 1994. 낙동강 하구 생태계 식물성 플랑크톤의 일차생산성, 육수지 27(1): 69-78
  6. 한국수자원공사. 1997. 시화지구개발 반월천, 동화천습지조성 조경공사 기본 및 실시 설계보고서
  7. 허우명, 김범철, 전만식. 1999. 동해한 석호의 부영양화 평가, 육수지 32(2): 141-151
  8. 황길순. 1996. 소양호 1차생산력과 부영양화에 관한 연구, 강원대학교 박사학위청구논문
  9. Belay, A. and G.E. fogg. 1978. Photoinhibition of photosynthesis in Asterionella Formosa (Bacillariophyceae). J. Phycol. 14: 341-347 https://doi.org/10.1111/j.1529-8817.1978.tb00310.x
  10. Dunstan, W.M. 1973. A comparison of the phptosynthesislight relationships in phylogenetically different marine microalgae. J. Exp. Mar. BioI. Ecol. 13: 181-187 https://doi.org/10.1016/0022-0981(73)90065-8
  11. EPA. 2000. constructed Wetlands Treatment of Municipal Wastewaters. Cincinnati, Ohio
  12. Fosberg, C. and S. Ryding. 1980. Eutrophication paramenters and trophic state indices in 30 Swedish wastereceiving lakes. Archiv fur Hydrobiologie 89: 189-207
  13. Gachter, R., R.A. Vollenweider and W.A. Glooschenko. 1974. Seasonal variations of temperature and nutrients in the surface waters oflakes Ontario and Erie. J. Fish. Res. Board Can. 31: 275-290 https://doi.org/10.1139/f74-047
  14. Glooschenko, W.A., J.E. Moore, M. Munawar and R.A. Vollenweider. 1974. Primary production in lakes Ontario and Erie: A comparative study. J. Fish. Res. Int. Soc. Gt. Lakes Res. p. 40-49
  15. Harrison, W.G., T. Platt and M.R. Lewis. 1985. The utility of light-saturated models for estimating marine primary productivity in the fiels; A comparison with conventional 'simulated' in situ methoss. Can. J. Fish. Aquat. Sci. 42: 864-872 https://doi.org/10.1139/f85-110
  16. Harrison, W.G. and T. Platt. 1980. Variations in assimilation number of coastal marine phytoplankton; Effects of environmental co-variates. J. Plankton Res. 2: 249-260 https://doi.org/10.1093/plankt/2.4.249
  17. Heyman, U. 1983. Relationship between production and biomass of phytoplankton in four Swedish lakes of different trophic status and humic content. Hydobiology 101: 89-104 https://doi.org/10.1007/BF00008660
  18. Ichiki, S. 1986. Primary production measurements in the south basin of Lake Biwa. Rep. Shiga. Pref. Inst. Pub. Hlth. And Environ. Sci. 21: 160-166
  19. Ichimura, S. 1964. Environmental gradient and its relation to primary productivity in Tokyo Bay. Records Oceanogr. Works Japan 9: 115-128
  20. Ichimura, S. and Y. Aruga. 1964. Photosynthetic natures of natural algal communities in Japanese waters. In: Recent Researches in the Fields of Hydrosphere, Atmosphere nad Nuclear Geochemistry (Miyake, Y. and T. Koyoma eds.), Maruzen, Tokyo
  21. Jokiel, P.L. and R.H. York. 1984. Importance of ultraviolet radiation in photoinhibition of microalgal growth. Limnol. Oceanogr. 29: 192-199 https://doi.org/10.4319/lo.1984.29.1.0192
  22. Kim, B. and D.S. Kim. 1989. Primary productivity by photosynthesis-irradiance model method in Lake Soyang and the bebavior of model paramenters. Korean J. Limnol. 22: 167-177
  23. Lee, J.A, K.J. Cho, O.S. Kwon and I.K. Chung. 1993. A study on the environmental factors in Naktong Estuarine Ecosystem. Korean J. Phycol. 8: 29-36
  24. Likens, G.E. 1975. Primary production of inlandaquatic ecosystems. In: Primary Productivity of the bioshphere (Lieth, H. and R.H. Whittaker eds.). Springer Verlag. New York
  25. Lorenzen, C.J. 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equation. Limnol. Oceanogr. 12: 343-346 https://doi.org/10.4319/lo.1967.12.2.0343
  26. Lorenzen, M.W. and A.W. Fast. 1976. Primary production in the sea. In: Ecology ofthe sea (Eds D.H. Cushing and J.J. Walsh eds.). Blackwell Scientific Publications, Oxford
  27. Marra, J. 1978. Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar. Biol. 46: 203-208 https://doi.org/10.1007/BF00390681
  28. Morris, I. 1980. The Physiological Ecology of Phytoplankton. University of California Press, Berkeley
  29. Nakanish, M., T. Narita, N. Suzuki and O. Mitamura. 1988. Assimilation number and primary productivity of phytoplankton in the south basin of Lake Biwa. Jpn. J. Limnol. 49: 175-183 https://doi.org/10.3739/rikusui.49.175
  30. Pickett, K. and J. Myers. 1966. Monochromatic light saturation curves for photosynthesis in Chlorella. Plant Physiol. 41: 90-98 https://doi.org/10.1104/pp.41.1.90
  31. Pierson, D.C., K. Pettersson and V. Istvanovics. 1992. Temporal changes in biomass specific photosynthesis during the summer; The regulation by environmental factors, and the importance of phytoplankton succession. Hydrobiologia 243-244: 119-135 https://doi.org/10.1007/BF00007027
  32. Platt, T., C.L. Gallegos and W.B. Harrison. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38: 687-701
  33. Platt, T. and A.D. Jassby. 1976. The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12: 421-430
  34. Thornton, K.W., B.L. Kimmel and F.E. Payne. 1990. Reservoir Limnology: Ecological Perspectives. John Wiley & Sons, Inc. New York
  35. Vollenweider, R.A. and A. Nauwerck. 1961. Some observations on the 14C method for measuring primary production. Verh. Internat. Verein. Limnol. 14: 134-139
  36. Wetzel, R.G. 2001. Limnology. 3th ed., Academic Press, New York
  37. Wetzel, R.G. and G.E. Likens. 1991. Limnological Analysis. 2th ed., Springer Verlag., New York
  38. Wetzel, R.G., P.H. Rich, M.C. Miller and H.L. Allen. 1972. Metabolism of dissolved and particulate detrial carbon in a temperate hard-water lake. Mem. Ist. Ital. Idrobial. 29(suppl.): 185-243