Effects of Nonylphenol on the Population Growth of Algae, Heterotrophic Nanoflagellate and Zooplankton

내분비장애물질 Nonylphenol이 미세조류, 종속영양편모충, 동물플랑크톤의 개체군 성장에 미치는 영향

  • Lee, Ju-Han (Department of Life Science, Hanyang University) ;
  • Lee, Hae-Ok (Department of Life Science, Hanyang University) ;
  • Kim, Baik-Ho (Department of Life Science, Hanyang University) ;
  • Katano, Toshiya (Department of Life Science, Hanyang University) ;
  • Hwang, Su-Ok (Paltang Regional Office, Korea Water Resources Corporation) ;
  • Kim, Dae-Hyun (Paltang Regional Office, Korea Water Resources Corporation) ;
  • Han, Myung-Soo (Department of Life Science, Hanyang University)
  • 이주한 (한양대학교 생명과학과) ;
  • 이해옥 (한양대학교 생명과학과) ;
  • 김백호 (한양대학교 생명과학과) ;
  • ;
  • 황수옥 (한국수자원공사 팔당권관리단) ;
  • 김대현 (한국수자원공사 팔당권관리단) ;
  • 한명수 (한양대학교 생명과학과)
  • Published : 2007.09.30

Abstract

Nonylphenol (NP) has been well known as a major substance of surfactant and/or estrogenic environmental hormone. We tested toxic effects of nonylphenol on the population growth and development of aquatic organism such as algae (Microcystis aeruginosa), heterotrophic nanoflagellate (Diphylleia rotans), micro- (Brachionus calyciflorus) and macro-zooplankton (Daphnia magna) among eutrophic water food-web constituents. Dosage of NP treatment were 4 to 5 grades, according to each organism's tolerance based on pre-experiments; algae (0.01, 0.05, 0.10, 1.00 mg $L^{-1}$) Diphylleia rotans (0.5, 1,2. 5,6, 10 ${\mu}g\;L^{-1})$, Brachionus calyciflorus (0.1, 0.5, 1, 2.5, 5 ${\mu}g\;L^{-1}$), and Daphnia magna (0.5, 1, 5, 10, 50 ${\mu}g\;L^{-1}$), respectively. Toxic effects were measured by the changes of biomass of each organism after NP treatment. All experiments were triplication. As suggested, the higher concentration of NP treatment, the stronger inhibited the population growth of all organisms tested. In view of toxicity, a variety of concentration of NP showed a significant growth inhibition to organism; algae to 0.05 $mg\;L^{-1}$, D. rotans and B. calyciflorus to 1.0 ${\mu}g\;L^{-1}$, and D. magna to 5.0 ${\mu}g\;L^{-1}$, respectively. The $EC_{50}$ of each organism to the nonylphenol are as follows; 3. calyciflorus (2.49 ${\mu}g\;L^{-1}$), D. rotans (3.49 ${\mu}g\;L^{-1}$), D. magna (7.61 ${\mu}g\;L^{-1})$, and M. aeruginosa (47 ${\mu}g\;L^{-1})$. NP toxic effects on the development of zooplankton like egg production showed some differences in treatment concentration between Brachionus calyciflorus ${0.1{\sim}1NP{\mu}g\;L^{-1})$ and Daphnia magna $(0.5{\sim}5NP\;{\mu}g\;L^{-1})$. These results suggest that a strong growth inhibition of predator or grazer by the nonylphenol can stimulate the algal growth, or can play important role in evoking the nuisance algal bloom in eutrophic water with enough nutrients.

계면활성제의 주된 원료이며 Estrogenic hormone으로 알려진 nonylphenol이 수중생태계 먹이망의 하등생물군 성장에 미치는 독성영향을 파악하고자, 배양중인 조류(Microcytis aeruginosa), 편모충(Diphylleia rotans), 소형 (Brachionus calyciflorus) 및 대형동물플랑크톤(Daphnia magna)에 다양한 농도로 제작된 NP을 처리하고 각 개체군의 성장 및 동물플랑크톤 B. calyciflorus, D. magna의 발생특성을 각각 조사하였다. 예비실험을 통하여, 투여농도는 개체군에 따라 조류(0.01, 0.05, 0.10, 1.00mg $L^{-1}$), Diphylleia rotans (0.5, 1, 2.5, 5, 10 ${\mu}g\;L^{-1}$), Brachionus calyciflorus (0.1, 0.5, 1, 2.5, 5 ${\mu}g\;L^{-1}$), Daphnia magna (0.5, 1, 5, 10, 50 ${\mu}g\;L^{-1}$) 등으로 $4{\sim}5$단계 농도를 처리하였으며, 독성효과는 각 개체군의 현존량 변화로 산정 하였으며 실험은 각각 3회씩 반복 실행하였다. 분석결과, 예상했던 것처럼 모든 개체군은 NP농도가 증가할수록 강한 성장 억제를 보였다. 조류실험에서는 0.05 mg $L^{-1}$, D. rotans와 B. calyciflorus는 공히 10 ${\mu}g\;L^{-1}$, 대형동물플랑크톤 D. magna는 5.0 ${\mu}g\;L^{-1}$부터 각각 유의한 성장억제를 보였다. Nonylphenol에 대한 각 개체군의 $EC_{50}$은 B. calyciflorus (2.49 ${\mu}g\;L^{-1}$) < D. rotans (3.49 ${\mu}g\;L^{-1}$) < D. magna (7.61 ${\mu}g\;L^{-1}$) < M. aeruginosa (47 ${\mu}g\;L^{-1}$) 의 순으로 나타나 NP에 대해 조류세포가 가장 강한 내성을 보인 반면 B. calyciflorus가 가장 약한 것으로 나타났다. 또한 동물플랑크톤의 발생에 있어서 B. calyciflorus는 NP농도$(0.1{\sim}1{\mu}g\;L^{-1})$, D. magna는 이보다 약간 높은 NP농도 $(0.5{\sim}5{\mu}g\;L^{-1})$에서 공히 내구란이 형성되지 않았다. 이상의 결과를 종합하여 볼 때, 조류섭식자인 편모충이나 동물플랑크톤은 모두 nonylphenol에 대하여 조류보다 내성이 극히 약하며 특히 발생계에 치명적인 영향을 받기 때문에 NP가 유입되는 수계에 있어서 섭식자 소멸로 인한 식물플랑크톤 대발생의 인자로 작용할 수 있음을 시사해 주고 있다.

Keywords

References

  1. 김성철, 박청길, 조현서, 이대인. 2003. 낙동강 퇴적물의 Nonylphenol과 Bisphenol A 오염도 평가, 한국물환경학회지 19: 357-366
  2. 김종훈. 2002a. 물 시료 중 Octylphenol, Nonylphenol, Di(2-ethylhexyl) pthalate의 연구, Anal. Sci. and Thechnol. 15: 172-179
  3. 김종훈. 2002b. 하수슬러지 중 Nonylphenol, Octylphenol, Di(2-ethylhexyl) phthalate의 연구, Anal. Sci. & Thechnol. 15: 451-458
  4. 위성욱, I. Yuhei, 조경, 나명석, 이종빈. 2002. 수계 Microcosm을 이용한 도금폐수의 독성평가, 한국물환경학회지 20: 256-262
  5. 이주한, 김백호, 한명수. 2005. 내분비교란물질이 유해조류의 성장에 미치는 영향, 육수지 38: 304-312
  6. Ahel, M., W. Giger and C. Schaffner. 1994. Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment-II. Occurrence and transformation in rivers. Water Res. 28: 1143-1152 https://doi.org/10.1016/0043-1354(94)90201-1
  7. Amaral Mendes, J.J. 2002. The endocrine disrupters: a major medical challenge. Food and Chem. Toxicol. 40: 781-788 https://doi.org/10.1016/S0278-6915(02)00018-2
  8. Bettinetti, R., D. Cuccato, S. Galassi and A. Provini. 2002. Toxicity of 4-nonylphenol in spiked sediment to three populations of Chironomus riparius. Chemosphere 46: 201-207 https://doi.org/10.1016/S0045-6535(01)00114-X
  9. Blackburn, M.A. and M.J. Waldock. 1995. Concentrations of alkylphenols in rivers and estuaries in England and Wales. Water Res. 29: 1623-1629 https://doi.org/10.1016/0043-1354(94)00340-D
  10. Chapin, R.E., J. Delaney, Y. Wang, L. Lanning, B. Davis, B. Collins, N. Mintz and G. Wolfe. 1999. The effects of 4-nonylphenol in rats: a multigeneration reproduction study. The effects of 4-nonylphenol in rate: a multi-generation reproduction study. Taxicol. Sci. 52: 80-91 https://doi.org/10.1093/toxsci/52.1.80
  11. Friberg-Jensen, U., L. Wendt-Rasch, P. Woin and K. Christ-offersen. 2003. Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organims at different trophic levels. Aquat. Toxicol. 63: 357-371 https://doi.org/10.1016/S0166-445X(02)00201-1
  12. Giger, W., P.H. Brunne and C. Schaffner. 1984. 4-Nonyl-phenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225: 623-625 https://doi.org/10.1126/science.6740328
  13. Gimeno, S., H. Komen, A. Gerritsen and T. Bowmer. 1998. Feminization of young males of the common carp, Cypri-nus carpio, exposed to 4-tert-pentylphenol during sexual differentiation. Aquat. Toxicol. 43: 77-92 https://doi.org/10.1016/S0166-445X(98)00056-3
  14. Gray, M.A. and C.D. Metcalfe. 1997. Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed to p-nonylphenol. Environ. Toxicol. Chem. 16: 203-218
  15. Hense, B.A., G. Welzl, G.F. Severin and K.W. Schramm. 2005. Nonylphenol induced changes in trophic web structure of plankton analysed by multivariate statistical approaches. Aquat. Toxicol. 73: 190-209 https://doi.org/10.1016/j.aquatox.2005.03.010
  16. Ishihara, K. and N. Nakajima. 2003. Improvement of marine environmental pollution using eco-system: decomposition and recovery of endocrine disrupting chemicals by marine phyto- and zooplanktons. J. Mol. Catal. B: Enzym. 23: 419-424 https://doi.org/10.1016/S1381-1177(03)00107-3
  17. Kashiwada, S., H. Ishikawa, N. Miyamoto, Y. Ohnishi and Y. Magara. 2002. Fish test for endocrine-disruption and estimation of water quality of Japanese rivers. Water Res. 36: 2161-2166 https://doi.org/10.1016/S0043-1354(01)00406-7
  18. Kim, B.R., S. Nakano, B.H. Kim and M.S. Han. 2006. Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 45: 163-170 https://doi.org/10.3354/ame045163
  19. Kim, J.S., D.L. Villeneuve, K. Kannan, K.T. Lee, S.A. Snyder, C.H. Koh and J.P. Giesy. 1999. Alkylphenols, polycyclic aromatic hydrocarbons, and organochlorines in sediment from Lake Shihwa, Korea: Instrumental and bioanalytical characterization. Environ. Toxicol. Chem. 18: 2424-2432 https://doi.org/10.1897/1551-5028(1999)018<2424:APAHAO>2.3.CO;2
  20. Kwak, I.S. and W.C. Lee. 2004. Detecting point for ecological disruptions and developmental delay exposure to DEHP in Chironomus riparius (Diptera: Chironomidae). Kor. J. Environ. Biol. 22: 321-328
  21. Li, D.H., M.S. Kim, W.J. Shin, U.H. Yim, J.R. Oh and Y.J. Kwon. 2004. Seasonal flux of nonylphenol in Han River, Korea. Chemosphere 56: 1-6 https://doi.org/10.1016/j.chemosphere.2004.01.034
  22. Mann, R.M. and J.R. Bidwell. 2000. Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquat. Toxicol. 51: 19-29 https://doi.org/10.1016/S0166-445X(00)00106-5
  23. Matozzo, V., M. Deppieri, V. Moschino and M.G. Marin. 2003. Evaluation of 4-nonylphenol toxicity in the clam Tapes philippinarum. Environ. Res. 91: 179-185 https://doi.org/10.1016/S0013-9351(02)00052-X
  24. Meregalli, G., L. Pluymers and F. Ollevier. 2001. Induction of mouthpart deformities in Chironomus riparius larvae exposed to 4-n-nonylphenol. Environ. Pollution. 111: 241-246 https://doi.org/10.1016/S0269-7491(00)00068-3
  25. Naylor, C.G. 1992. Alkylphenol ethoxylates in the environment. J. Offic. Anal. Chem. Soc. 69: 695-703
  26. Pavli, Z., Z. Vidakovic-Cifrek and D. Puntaric. 2005. Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere 61: 1061-1068 https://doi.org/10.1016/j.chemosphere.2005.03.051
  27. Renner, R. 1997. European bans on surfactant trigger transatlantic debate. Environ. Sci. Technol. 31: 316-320 https://doi.org/10.1021/es972366q
  28. Schwaiger, J., O.H. Spieser, C. Bauer, H. Ferling, U. Mallow, W. Kalbfus and R.D. Negele. 2000. Chronic toxicity of nonylphenol and ethinylestradiol: haematological and histopathological effects in juvenile Common carp (Cyprinus carpio). Aquat. Toxicol. 51: 69-78 https://doi.org/10.1016/S0166-445X(00)00098-9
  29. Sibley, P.K., K.R. Solomon, S. Mabury and J. Sall. 2000. Microcosm assessment of the environmental fate and biological effect of nonylphenol. Guelph Turfgrass Institute. Annual Research Report
  30. Sugiura, K. 1996. The use of an aquatic microcosm for pollution effects assessment. Water Res. 30: 1801-1812 https://doi.org/10.1016/0043-1354(96)00062-0
  31. Tanaka, Y. and J. Nakanishi. 2002. Chronic effects of p-nonylphenol on survival and reproduction of Daphnia galeata: multigenerational life table experiment. Institute of Environ. Technol. 17: 487-492
  32. Traunspurger, W., H. Schafer and A. Femde. 1996. Comparative investigation of the effect of herbicide on aquatic organism in single species tests and aquatic microcosms. Chemosphere 33: 1129-1141 https://doi.org/10.1016/0045-6535(96)00252-4
  33. Yadetie, F. and R. Male. 2002. Effects of 4-nonylphenol on gene expression of pituitary hormones in juvenile Atlantic salmon (Salmo salar). Aquat. Toxicol. 58: 113-129 https://doi.org/10.1016/S0166-445X(01)00242-9