The Vertical Distribution of Sulfate Reducing Bacteria (SRB) by Florescence In Situ Hybridization in Sediments of Lakes in Korea and China

  • Kim, In-Seon (Department of Environmental Science, and Research Institute of Life Sciences, Kangwon National University) ;
  • Nam, Jong-Hyun (Department of Environmental Science, and Research Institute of Life Sciences, Kangwon National University) ;
  • Jeon, Sun-Ok (Department of Environmental Science, and Research Institute of Life Sciences, Kangwon National University) ;
  • Zhao, Youzhi (The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences) ;
  • Ahn, Tae-Seok (Department of Environmental Science, and Research Institute of Life Sciences, Kangwon National University)
  • Published : 2007.12.31

Abstract

The vertical distributions of sulfate reducing bacteria (SRB) in sediments of lakes in Korea (Lake Sihwa and Lake Soyang) and China (Lake Aha and Lake Erhai) were investigated by fluorescence in situ hybridization (FISH). SRB from sediment of Lakes of China were located to deeper layer than those in Lakes of Korea. SRB were not detected below 19 cm and 10 cm depth in sediments of Lake Sihwa and Lake Soyang, respectively. SRB numbers were, however, detected at all observed sediments in Lake Aha and Lake Erhai. In case of lakes in Korea, the proportion of SRB ranged from 2.9 to 25.6% (Lake Sihwa) and ranged from 0.6 to 7.1% (Lake Soyang). For lakes in China, the proportions of SRB were from 0.6 to 19.4% and from 2.9 to 11.2% within sediments from Lake Aha and from Lake Erhai, respectively. The high peaks of SRB numbers in sediments of all lakes were appearing at depths between 0 cm and 2 cm.

Keywords

References

  1. Amann, R.I., J. Stromley, R. Devereux, R. Key and D.A. Stahl. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58: 614-623
  2. Amann, R.I., W. Ludwig and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169
  3. Aron, L.M., E.B. Pamela and T.H. Alan. 1989. Acid stress and aquatic microbial interactions, p. 1-19. In: Salem, S.R. and P.D. Rao (eds.), CRC Press. Inc., Florida, USA
  4. Choi, K.S. 2007. Management of brackish lake-case of Lake Shiwa. Proceeding of Symposium for management of brackish lakes in korea. Wonju Regional Enrironmental Office. 120-137
  5. Fredrickson, J.K. and T.C. Onstott. 1996. Microbes deep inside the earth. Sci. Americans. 275: 68-73
  6. Guodong, Z., B. Takano, A. Kuno and M. Matsuo. 2001. Iron speciation in modern sediment from Erhai Lake, southwestern China Redox conditions in an ancient environment. Appl. Geochem. 10: 1201-1213
  7. Hobbie, J.E., R.J. Daley, and S. Jasper. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228
  8. Hyllerberg, J. and H. Riis-Vestergaard. 1984. Marine environments; the fate of detritus. Akademisk Forlag, Copenhagen, Denmark
  9. Hyun, M.S., I.S. Chang, H.S. Park, B.H. Kim, H.J. Kim, H.K. Lee and K.K. Kwon. 1999. Relationship between the organic content, heavy metal concentration and anaerobic respiration bacteria in the sediment of Shihwa-ho. Kor. J. Appl. Microbiol. Biotechnol. 3: 252-259
  10. Icgen, B., S. Moosa and S.T.L. Harrison. 2007. A study of the relative dominance of selected anaerobic sulfate-reducing bacteria in a continuous bioreactor by fluorescence in situ hybridization. Microbiol Ecol. 53: 43-52 https://doi.org/10.1007/s00248-006-9009-0
  11. Jorgensen, B.B. 1982. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature. 296: 643-645 https://doi.org/10.1038/296643a0
  12. Kim, B., K.S. Cho, W.M. Heo and D.S. Kim. 1989. The eutrophication of Lake Soyang, Korean J Limnol. 31: 17-24
  13. Kim, B.C. 2006. Survey of ecosystem structure of Lakes in the North-Han River system. National Institude of Environmental Research 161
  14. Kim, J.K., M.S. Shin, C.W. Jang, S.M. Jung and B.C. Kim. 2007. Comparison of TOC and DOC Distribution and the Oxidation Efficiency of BOD and COD in Several Reservoirs and Rivers in the Han River System. Journal of Korean Society on Water Quality 23: 72-80
  15. Koizumi, Y., S. Takii, M. Nishino and T. Nakajima. 2003. Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in the profundal sediment of a mesotrophic lake. FEMS Microbiol. Ecol. 44: 101-108 https://doi.org/10.1016/S0168-6496(02)00463-4
  16. Li, J.H., K.J. Purdy, S. Takii and H. Hayashi. 1999. Seasonal changes in ribosomal RNA of sulfatereducing bacteria and sulfate reducing activity in a freshwater lake sediment. FEMS Microbiol. Ecol. 24: 221-234
  17. Llobet-Brossa, E., R. Rossello-Mora and R. Amann. 1998. Microbial community composition of Wadden sea sediment as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol. 64: 2691-2696
  18. Llobet-Brossa, E., R. Rabus, M.E. Bottcher, M. Konneke, N. Finke, A. Schramm, R.L. Meyer, S. Grotzchel, R. Rossello-Mora and R. Amann. 2002. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquat. Microb. Ecol. 29: 211-226 https://doi.org/10.3354/ame029211
  19. Okabe, S., T. Itoh, H. Satoh and Y. Watanabe. 1999. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 65: 5107 -5116
  20. Ravenschlag, K., K. Sahm, C. Knoblauch, B.B. Jor-gensen and R. Amann. 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Appl. Environ. Microbiol. 66: 3592-3602 https://doi.org/10.1128/AEM.66.8.3592-3602.2000
  21. Sahm, K., C. Knoblauch and R. Amann. 1999. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine arctic sediments. Appl. Environ. Microbiol. 65: 3976-3981
  22. Sun, S. and Z. Chen. 2000. Nitrogen distribution in the lakes and lacustrine of China. Nutrient Cycling in Agroecosystems 57: 23-31 https://doi.org/10.1023/A:1009880116259
  23. Trimmer, M., K.J. Purdy and D.B. Nedwell. 1997. Process measurement and phylogenie analysis of the sulfate reducing bacterial communities of two contrasting benthic sites in the upper estuary of the Great Ouse, Norfolk, UK. FEMS Microbiol. Ecol. 24: 333-342 https://doi.org/10.1111/j.1574-6941.1997.tb00450.x
  24. Tonolla, M., A. Demarta, S. Peduzzi and D. Hahn. 2000. In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic (Switzerland). Appl. Environ. Microbiol. 66: 820-824 https://doi.org/10.1128/AEM.66.2.820-824.2000
  25. Wang, Y.C., R.G. Huang, and G.J. Wan. 1998. The newly developed sample for collecting samples near the lacs trine sediment-water interface. Geol. Geochem. 1: 94-96
  26. Wang, F., C. Liu, X. Liang and Z. Wei. 2003. Remobilization of trace metals induced by microbiological activities near sediment-water interface, Aha Lake, Guiyang. Chinese Science Bulletin 48: 2352-2356 https://doi.org/10.1360/03wd0013
  27. Wang, M.Y., X.B. Liang, X.Y. Yuan, W. Zhang and J. Zeng. 2007. Analyses of the vertical and temporal distribution of sulfate-reducing bacteria in Lake Aha (China). Envrion. Geol. dio: 10.1007/s 00254-007-0787-6
  28. Widdle, F. 1988. Microbiology and ecology of sulfateand sulfur-reducing bacteria, p. 469-585. In: A. J. B. Zebnder (ed.), Biology of anaerobic microorganisms. John Wiley and Sons, Inc., New York, N.Y