DOI QR코드

DOI QR Code

Intercomparison of Wind and Air Temperature Fields of Meteorological Model for Forecasting Air Quality in Seoul Metropolitan Area

수도권지역 대기질 예측을 위한 기상장 모델의 바람장과 온도장 비교 연구

  • Jeong, Ju-Hee (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Yoo-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Moon, Yun-Seob (Department of Environmental Education, Korea National University of Education) ;
  • Hwang, Mi-Kyoung (Division of Earth Environmental System, Pusan National University)
  • 정주희 (부산대학교 지구환경시스템학부) ;
  • 김유근 (부산대학교 지구환경시스템학부) ;
  • 문윤섭 (한국교원대학교 환경교육과) ;
  • 황미경 (부산대학교 지구환경시스템학부)
  • Published : 2007.12.31

Abstract

The MM5, RAMS and WRF, meteorological models have provided the dynamical parameters as inputs to air quality model. A major content of this study is that significant characteristics of three models for high-ozone occurrence analyze for surface wind and air temperature fields and compare with observation data in Seoul metropolitan area. An analysis of air temperature field revealed that location of core in high temperature of MM5 and WRF differed from that of RAMS. MM5 and WRF indicated high temperature in Seoul but RAMS represented it on the outskirts of Seoul. MM5 and WRF were underestimated maximum temperature during daytime but RAMS simulated similar value with observation data. Surface wind field with three models, it was shown many differences at horizontal distribution of wind direction. RAMS indicated weak wind speed in land and strong sea breeze at coastal areas than MM5 and WRF. However wind speed simulated by three model were overestimated during both daytime and nighttime.

Keywords

References

  1. 김승범, D.W. Byun (2005) WRF-CMAQ 모형을 이용한 질량 보존적 온라인 및 오프라인 대기질 모델링 연구, 한국대기환경학회 추계학술대회 논문집, 124- 126
  2. 김영성(2000) 우리나라 오존농도 변화 추이와 주요인자, 한국대기환경학회지, 16(6), 607-623
  3. 김영성, 오현선(1999) 1990-1997 기간 중 서울.수도권 지역의 고농도 오존 사례 연구, 한국대기환경학회지, 15(3), 267-280
  4. 김철희, 박일수, 이석조, 김정수, 진형아, 성한규(2004) 지역 대기질 측정망에 나타난 국내 대기오염도의 최근 동향 - 2002년 고농도 사례 및 그 기상 특징, 한국대기환경학회지, 20(2), 215-224
  5. 오인보(2003) 대도시지역 고농도 오존발생의 기상학적 메카니즘: 관측자료 분석과 수치모델링 연구, 부산대학교 박사학위 논문
  6. 오인보, 김유근(2002) 한반도 주요 대도시지역의 지표오존 특성 : 추세, 일변화, 월변화, 수평분포, 한국대기환경학회지, 18(4), 253-264
  7. 오인보, 김유근, 황미경(2004) 연안도시지역 해풍지연이 오존분포에 미치는 영향, 한국대기환경학회지, 20(3), 345-360
  8. Businger, J.A., J.C. Wyngaard, Y. Izumi, and E.F. Bradley (1971) Flux-profile relationship in the atmosphere surface layer, J. Atmos. Sci., 28, 181-189 https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
  9. Chan, C.Y. and L.Y. Chan (2000) The effect of meteorology and air pollution transport on ozone episodes at a subtropical coastal Asian city, Hong Kong, J. Geophys. Res., 105, 20707-20724 https://doi.org/10.1029/2000JD900140
  10. Chen, S.-H. and J. Dudhia (2000) Annual report: WRF physics, Air Force Weather Agency, 38pp.
  11. Dudhia, J. (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107 https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  12. Hong, S.Y. and H.L. Pan (1996) Comparison of NCEP-NCAR Reanalysis with 1987 FIFE Data, Mon. Wea. Rea., 124, 1480-1498 https://doi.org/10.1175/1520-0493(1996)124<1480:CONNRW>2.0.CO;2
  13. Kain, H.S. and J.M. Fritsch (1993) Convective parameterization for mesoscale models; The Kain-Fritsch scheme. The representation of cumulus convection in numerical models. K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 246
  14. Klemp, J.B. and D.R. Durran (1983) An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models, Mon. Wea. Rev., 111, 430-444 https://doi.org/10.1175/1520-0493(1983)111<0430:AUBCPI>2.0.CO;2
  15. Liu, C.M., C.Y. Huang, S.L. Shieh, and C.C. Wu (1994) Important meteorological parameters for ozone episodes experienced inthe Taipei basin, Atmos. Environ., 28, 159-173 https://doi.org/10.1016/1352-2310(94)90031-0
  16. Louis, J.F. (1979) A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorol., 17, 187-202 https://doi.org/10.1007/BF00117978
  17. McCumber, M.C. and R.A. Pielke (1981) Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model, Part I: Soil layer, J. Geophys. Res., 86, 9929-9938 https://doi.org/10.1029/JC086iC10p09929
  18. Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J., Iacono, and S.A. Clough (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated -k model for the longwave. J. Geophys, Res., 102 (D14), 16663-16682 https://doi.org/10.1029/97JD00237
  19. North American Research Strategy for Tropospheric Ozone (NARSTO) Synthesis Team (2000) an assessment of tropospheric ozone pollution-a North American perspective
  20. Reisner, J., R.J. Rasmussen, and R.T. Bruintjes (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model, Quart. J. Roy. Meteor. Soc., 124B, 1071-1107
  21. Temback, C.J. and R. Kessler (1985) A surface temperature and moisture parameterization for use in mesoscale numerical models, Preprint, 7th Conference on Numerical Weather Prediction, 17-20 June 1985, Montreal, Canada, AMS

Cited by

  1. Air quality modeling guideline for national air policy development and evaluation - Part I General information - vol.22, pp.5, 2013, https://doi.org/10.14249/eia.2013.22.5.537
  2. Analysis of Domestic and Foreign Contributions using DDM in CMAQ during Particulate Matter Episode Period of February 2014 in Seoul vol.32, pp.1, 2016, https://doi.org/10.5572/KOSAE.2016.32.1.082
  3. Impact of Emission Inventory Choices on PM10 Forecast Accuracy and Contributions in the Seoul Metropolitan Area vol.33, pp.5, 2017, https://doi.org/10.5572/KOSAE.2017.33.5.497