Swinging Effect of Salicylic Acid on the Accumulation of Polyhydroxyalkanoic Acid (PHA) in Pseudomonas aeruginosa BM114 Synthesizing Both MCL- and SCL-PHA

  • Rho, Jong-Kook (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University) ;
  • Choi, Mun-Hwan (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University) ;
  • Shim, Ji-Hoon (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University) ;
  • Lee, So-Young (Nano-Biomaterials Science Laboratory, Graduate School, Gyeongsang National University) ;
  • Woo, Myeong-Ji (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University) ;
  • Ko, Bong-Sung (Department of Chemistry, University of Ulsan) ;
  • Chi, Ki-Whan (Department of Chemistry, University of Ulsan) ;
  • Yoon, Sung-Chul (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University)
  • Published : 2007.12.31

Abstract

A bacterium, Pseudomonas aeruginosa BM114, capable of accumulating a blend of medium-chain-length (MCL)- and short-chain-length (SCL)-polyhydroxyalkanoic acid (PHA), was isolated. Salicylic acid (SA), without being metabolized, was found to specifically inhibit only the accumulation of MCL-PHA without affecting cell growth. An addition of 20 mM SA selectively inhibited the accumulation of MCL-PHA in decanoate-grown cells by 83% of the control content in one-step cultivation, where overall PHA accumulation was inhibited by only ${\sim}11%$. Typically, the molar monomer-unit ratio of the PHA for 25 mM decanoate-grown cells changed from 46:4:25:25 (=[3-hydroxybutyrate]:[3-hydroxycaproate]: [3-hydroxyoctanoate]:[3-hydroxydecanoate]) at 0 mM SA (dry cell wt, 1.97 g/l; PHA content, 48.6 wt%) to 91:1:4:4 at 20 mM SA (dry cell wt, 1.85 g/l; PHA content, 43.2 wt%). Thus, the stimulation of SCL-PHA accumulation was observed. Growth of P. aeruginosa BM114 on undecanoic acid also produced a PHA blend composed of 47.4% P(3HB-co-3-hydroxyvalerate) and 52.6% P(3-hydroxyheptanoate-co-3-hydroxynonanoate-co-3-hydroxyundecanoate). Similar to the case of even-carboxylic acids, SA inhibited the accumulation of only MCL-PHA, but stimulated the accumulation of SCL-PHA. For all medium-chain fatty acids tested, SA induced a stimulation of SCL-PHA accumulation in the BM114 strain. SA could thus be used to suppress only the formation of MCL-PHA in Pseudomonas spp. accumulating a blend of SCL-PHA and MCL-PHA.

Keywords

References

  1. Abe, H., Y. Doi, T. Fukushima, and H. Eya. 1994. Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. 61-3. Int. J. Biol. Macromol. 16: 115-119
  2. Anderson, A. J. and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472
  3. Choi, M. H., H.-J. Lee, J. K. Rho, S. C. Yoon, J. D. Nam, D. Lim, and R. W. Lenz. 2003. Biosynthesis and local sequence specific degradation of poly(3-hydroxyvalerateco- 4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 4: 38-45 https://doi.org/10.1021/bm025596s
  4. Choi, M. H. and S. C. Yoon. 1994. Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl. Environ. Microbiol. 60: 3245-3254
  5. Fiedler, S., A. Steinbüchel, and B. H. A. Rehm. 2000. PhaGmediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl. Environ. Microbiol. 66: 2117-2124 https://doi.org/10.1128/AEM.66.5.2117-2124.2000
  6. Green, P. R., J. Kemper, L. Schechtman, L. Guo, M. Satkowski, S. Fiedler, A. Steinbüchel, and B. H. A. Rehm. 2002. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid ${\beta}$-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3: 208- 213 https://doi.org/10.1021/bm015620m
  7. Han, M.-J., S. J. Park, J. W. Lee, B.-H. Min, S. Y. Lee, S.-J. Kim, and J. S. Yoo. 2006. Analysis of poly(3-hydroxybutyrate) granule-associated proteome in recombinant Escherichia coli. J. Microbiol. Biotechnol. 16: 901-910
  8. Hinz, B., V. Kraus, A. Pahl, and K. Brune. 2000. Salicylate metabolites inhibit cyclooxygenase-2-dependent prostaglandin E2 synthesis in murine macrophages. Biochem. Biophys. Res. Commun. 274: 197-202 https://doi.org/10.1006/bbrc.2000.3123
  9. Hoffmann, N., A. Steinbüchel, and B. H. A. Rehm. 2000. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylasemediated polyhydroxyalkanoate biosynthetic pathway. Appl. Microbiol. Biotechnol. 54: 665-670 https://doi.org/10.1007/s002530000441
  10. Kamiya, N., Y. Yamamoto, Y. Inoue, R. Chujo, and Y. Doi. 1989. Microstructure of bacterially synthesized poly(3- hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 22: 1676-1682 https://doi.org/10.1021/ma00194a030
  11. Kato, M., H. J. Bao, C.-K. Kang, T. Fukui, and Y. Doi. 1996. Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl. Microbiol. Biotechnol. 45: 363-370
  12. Kim, T.-W., M. T. Vo, H.-D. Shin, and Y.-H. Lee. 2005. Molecular structure of the PHA synthesis gene cluster from new mcl-PHA producer Pseudomonas putida KCTC1639. J. Microbiol. Biotechnol. 15: 1120-1124
  13. Krieg, N. R. and J. G. Holt. 1984. Gram-negative aerobic rods and cocci, p. 140. In R. G. G. Murray and D. J. Brenner (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 1. The Williams & Wilkins Co., Baltimore
  14. Lee, D. S., M. W. Lee, S. H. Woo, and J. M. Park. 2005. Effects of salicylate and glucose on biodegradation of phenanthrene by Burkholderia cepacia PM07. J. Microbiol. Biotechnol. 15: 859-865
  15. Lee, H.-J., M. H. Choi, T.-U. Kim, and S. C. Yoon. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2- bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963- 4974 https://doi.org/10.1128/AEM.67.11.4963-4974.2001
  16. Lee, H.-J., J. K. Rho, K. A. Noghabi, S. E. Lee, M. H. Choi, and S. C. Yoon. 2004. Channeling of intermediates derived from medium-chain fatty acids and de novo-synthesized fatty acids to polyhydroxyalkanoic acid by 2-bromooctanoic acid in Pseudomonas fluorescens BM07. J. Microbiol. Biotechnol. 14: 1256-1266
  17. Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53
  18. Matsumoto, K., H. Matsusaki, K. Taguchi, M. Seki, and Y. Doi. 2001. Cloning and characterization of the Pseudomonas sp. 61-3 phaG gene involved in polyhydroxyalkanoate biosynthesis. Biomacromolecules 2: 142-147
  19. Matsumoto, K., H. Matsusaki, K. Taguchi, M. Seki, and Y. Doi. 2002. Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in Pseudomonas sp. 61-3. Biomacromolecules 3: 787-792
  20. Matsusaki, H., S. Manji, K. Taguchi, M. Kato, T. Fukui, and Y. Doi. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3- hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180: 6459-6467
  21. Oh, J. S., M. H. Choi, and S. C. Yoon. 2005. In vivo 13CNMR spectroscopic study of polyhydroxyalkanoic acid degradation kinetics in bacteria. J. Microbiol. Biotechnol. 15: 1330-1336
  22. Price, C. D. T., I. R. Lee, and J. E. Gustafson. 2000. The effects of salicylate on bacteria. Int. J. Biochem. Cell Biol. 32: 1029-1043 https://doi.org/10.1016/S1357-2725(00)00042-X
  23. Park, S. J., J. I. Choi, and S. Y. Lee. 2005. Short-chain-length polyhydroxyalkanoates: Synthesis in metabolically engineered Escherichia coli and medical applications. J. Microbiol. Biotechnol. 15: 206-215
  24. Qi, Q., A. Steinbüchel, and B. H. A. Rehm. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): Inhibition of fatty acid ${\beta}$-oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89- 94
  25. Rehm, B. H. A., N. Kröger, and A. Steinbüchel. 1998. A new metabolic link between fatty acid synthesis and polyhydroxyalkanoic acid synthesis. J. Biol. Chem. 273: 24044-24051 https://doi.org/10.1074/jbc.273.37.24044
  26. Steinbuchel, A. and S. Wiese. 1992. A Pseudomonas strain accumulating polyesters of 3-hydroxybutyric acid and mediumchain- length 3-hydroxyalkanoic acids. Appl. Microbiol. Biotechnol. 37: 691-697
  27. Ward, P. G. and K. E. O'Connor. 2005. Bacterial synthesis of polyhydroxalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int. J. Biol. Macromol. 35: 127-133 https://doi.org/10.1016/j.ijbiomac.2005.01.001
  28. Ward, P. G., G. de Roo, and K. E. O'Connor. 2005. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 71: 2046-2052 https://doi.org/10.1128/AEM.71.4.2046-2052.2005
  29. Yoon, S. C. and M. H. Choi. 1999. Local sequence dependence of polyhydroxyalkanoic acid degradation in Hydrogenophaga pseudoflava. J. Biol. Chem. 274: 37800- 37808 https://doi.org/10.1074/jbc.274.53.37800