PCR-based Specific Detection of Ralstonia solanacearum by Amplification of Cytochrome c1 Signal Peptide Sequences

  • Kang, Man-Jung (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lee, Mi-Hee (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Shim, Jae-Kyung (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Seo, Sang-Tae (Korea Forest Research Institute) ;
  • Shrestha, Rosemary (Central Department of Botany, Tribhuvan University) ;
  • Cho, Min-Seok (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Hahn, Jang-Ho (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Park, Dong-Suk (National Institute of Agricultural Biotechnology, Rural Development Administration)
  • Published : 2007.11.30

Abstract

A polymerase chain reaction (PCR)-based method was developed to detect the DNA of Ralstonia solanacearum, the causal agent of bacterial wilt in various crop plants. One pair of primers (RALSF and RALSR), designed using cytochrome c1 signal peptide sequences specific to R. solanacearum, produced a PCR product of 932 bp from 13 isolates of R. solanacearum from several countries. The primer specificity was then tested using DNA from 21 isolates of Ralstonia, Pseudomonas, Burkholderia, Xanthomonas, and Fusarium oxysporum f. sp. dianthi. The specificity of the cytochrome c1 signal peptide sequences in R. solanacearum was further confirmed by a DNA-dot blot analysis. Moreover, the primer pair was able to detect the pathogen in artificially inoculated soil and tomato plants. Therefore, the present results indicate that the primer pair can be effectively used for the detection of R. solanacearum in soil and host plants.

Keywords

References

  1. Atlas, R. M. 2004. Handbook of Microbiological Media, 3rd Ed. CRC Press
  2. Bassam, B. J., G. Caetano-Anolles, and P. M. Gresshoff. 1992. DNA amplification fingerprinting of bacteria. Appl. Microbiob. Biotechnol. 38: 70-76
  3. Boudazin, G., A. C. Le Roux, K. Josi, P. Labarre, and B. Jouan. 1999. Design of division specific primers of Ralstonia solanacearum and application to the identification of European isolates. Eur. J. Plant Pathol. 105: 373-380 https://doi.org/10.1023/A:1008763111230
  4. Buddenhagen, I. and A. Kelman. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 2: 203-230 https://doi.org/10.1146/annurev.py.02.090164.001223
  5. Caruso, P., M. T. Gorris, M. Cambra, J. L. Palomo, J. Collar, and M. M. Lopez. 2002. Enrichment double-antibody sandwich indirect enzyme-linked immunosorbent assay that uses a specific monoclonal antibody for sensitive detection of Ralstonia solanacearum in asymptomatic potato tubers. Appl. Environ. Microbiol. 68: 3634-3638 https://doi.org/10.1128/AEM.68.7.3634-3638.2002
  6. Dittapongpitch, V. and S. Surat. 2003. Detection of Ralstonia solanacearum in soil and weeds from commercial tomato fields using immunocapture and the polymerase chain reaction. J. Phytopathol. 151: 239-246 https://doi.org/10.1046/j.1439-0434.2003.00714.x
  7. Elphinstone, J. G., J. Hennessy, J. K. Wilson, and D. E. Stead. 1996. Sensitivity of different methods for the detection of Pseudomonas solanacearum (Smith) in potato tuber extracts. EPPO Bull. 26: 663-678 https://doi.org/10.1111/j.1365-2338.1996.tb01511.x
  8. Granada, G. A. and L. Sequeira. 1983. A new selective medium for Pseudomonas solanacearum. Plant Dis. 67: 1084-1088 https://doi.org/10.1094/PD-67-1084
  9. Hayward, A. 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27: 265-277 https://doi.org/10.1111/j.1365-2672.1964.tb04912.x
  10. Hayward, A. C., H. M. El-Nashaar, U. Nydegger, and L. De Lindo. 1990. Variation in nitrate metabolism in biovars of Pseudomonas solanacearum. J. Appl. Bacteriol. 69: 269-280 https://doi.org/10.1111/j.1365-2672.1990.tb01518.x
  11. Hayward, A. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria, pp. 127-135. In G. L. Hartman and A. C. Hayward (eds.), Bacterial Wilt: The Disease and its Causative Agent, Pseudomonas solanacearum. CAB International, Oxford, England
  12. Ito, S., Y. Ushijima, T. Fujii, S. Tanaka, M. Kameya-Iwaki, S. Yoshiwara, and F. Kishi. 1998. Detection of viable cells of Ralstonia solanacearum in soil using a semiselective medium and a PCR technique. J. Phytopathol. 146: 379-384 https://doi.org/10.1111/j.1439-0434.1998.tb04769.x
  13. Janse, J. D., F. A. X. Araluppan, J. Schans, M. Wenneker, and W. Westerhuis. 1998. Experiences with bacterial brown rot Ralstonia solanacearum biovar 2, race 3, in The Netherlands, pp. 146-154. In P. Prior, C. Allen, and J. Elphinstone (eds.), Bacterial Wilt Disease - Molecular and Ecological Aspects. Springer-Verlag, Berlin, Germany
  14. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693-695
  15. Kim, S., H. Lim, W. Lee, I. Hwang, G. Woo, and S. Ryu. 2006. PCR-based detection and molecular genotyping of enterotoxigenic Clostridium perfringens isolates from swine diarrhea in Korea. J. Microbiol. Biotechnol. 16: 291-294
  16. Lee, Y. A. and C. C. Wang. 2000. The design of specific primers for the detection of Ralstonia solanacearum in soil samples by polymerase chain reaction. Bot. Bull. Acad. Sin. 41: 121-128
  17. Mehta, T., M. V. Coppi, S. E. Childers, and D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71: 8634-8641 https://doi.org/10.1128/AEM.71.12.8634-8641.2005
  18. Park, Y. J., B. M. Lee, J. H. Hahn, G. B. Lee, and D. S. Park. 2004. Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequence. Microbiol. Res. 159: 419-423 https://doi.org/10.1016/j.micres.2004.09.002
  19. Park, D. S., J. K. Shim, J. S. Kim, B. Y. Kim, M. J. Kang, Y. J. Seol, J. H. Hahn, R. Shrestha, C. K. Lim, S. J. Go, and H. G. Kim. 2006. PCR-based sensitive and specific detection of Pectobacterium atrosepticum using primers based on Rhs family gene sequences. Plant Pathol. 55: 625-629 https://doi.org/10.1111/j.1365-3059.2006.01434.x
  20. Park, J. H., H. K. Park, B. C. Kang, E. S. Song, H. J. Jang, and C. M. Kim. 2006. Development of genus- and speciesspecific probe design system for pathogen detection based on 23S rDNA. J. Microbiol. Biotechnol. 16: 740-747
  21. Pegg, K. and M. Moffett. 1971. Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust. J. Exp. Agric. Anim. Husb. 11: 696-698 https://doi.org/10.1071/EA9710696
  22. Pradhanang, P. M., J. G. Elphinstone, and R. T. V. Fox. 2000. Sensitive detection of Ralstonia solanacearum in soil: A comparison of different detection techniques. Plant Pathol. 49: 414-422 https://doi.org/10.1046/j.1365-3059.2000.00481.x
  23. Rasmussen, O. F. and J. C. Reeves. 1992. DNA probes for the detection of plant pathogenic bacteria. J. Biotechnol. 25: 203-220 https://doi.org/10.1016/0168-1656(92)90156-4
  24. Schierwater, B. and A. Ender. 1993. Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res. 21: 4647-4648 https://doi.org/10.1093/nar/21.19.4647
  25. Schonfeld, J., H. Heuer, J. D. van Elsas, and K. Smalla. 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl. Environ. Microbiol. 69: 7248-7256 https://doi.org/10.1128/AEM.69.12.7248-7256.2003
  26. Seal, S. E., L. A. Jackson, and M. J. Daniels. 1992. Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction. Appl. Environ. Microbiol. 58: 3751-3758
  27. Seal, S. E., L. A. Jackson, J. P. W. Young, and M. J. Daniels. 1993. Differentiation of P. solanacearum, P. syzygii, P. pickettii and the blood disease bacterium by partial 16S rRNA sequencing: Construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. J. Gen. Microbiol. 139: 1587-1594 https://doi.org/10.1099/00221287-139-7-1587
  28. Van Elsas, J. D., P. Kastelein, P. van Bekkum, J. M. van der Wolf, P. M. de Vries, and L. S. van Overbeek. 2000. Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90: 1358-1366 https://doi.org/10.1094/PHYTO.2000.90.12.1358
  29. van der Wolf, J. M., P. J. van Bekkum, J. D. van Elsas, E. H. Nijhuis, S. G. C. Vriend, and M. A. Ruissen. 1998. Immunofluorescence colony-staining and selective enrichment in liquid medium for studying the population dynamics of Ralstonia (Pseudomonas) solanacearum (race 3) in soil. EPPO Bull. 28: 71-79 https://doi.org/10.1111/j.1365-2338.1998.tb00705.x
  30. van der Wolf, J. M., S. G. C. Vriend, P. Kastelein, E. H. Nijhuis, P. J. van Bekkum, and J. W. L. van Vuurde. 2000. Immunofluorescence colony-staining (IFC) for detection and quantification of Ralstonia (Pseudomonas) solanacearum biovar 2 (race 3) in soil and verification of positive results by PCR and dilution plating. Eur. J. Plant Pathol. 106: 123-133 https://doi.org/10.1023/A:1008728828144
  31. Ward, L. J. and S. H. De Boer. 1994. Specific detection of Erwinia carotovora subsp. atroseptica with a digoxigeninlabeled DNA probe. Phytopathology 84: 180-186 https://doi.org/10.1094/Phyto-84-180
  32. Weller, S. A., J. G. Elphinstone, N. C. Smith, N. Boonham, and D. E. Stead. 2000. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl. Environ. Microbiol. 66: 2853-2858 https://doi.org/10.1128/AEM.66.7.2853-2858.2000