Wound Healing Activity of Gamma-Aminobutyric Acid (GABA) in Rats

  • Han, Dong-Oh (Acupuncture & Meridian Science Research Center, College of Oriental Medicine, Kyung-Hee University) ;
  • Kim, Hee-Young (Acupuncture & Meridian Science Research Center, College of Oriental Medicine, Kyung-Hee University) ;
  • Lee, Hye-Jung (Acupuncture & Meridian Science Research Center, College of Oriental Medicine, Kyung-Hee University) ;
  • Shim, In-Sop (The Catholic University of Korea) ;
  • Hahm, Dae-Hyun (Acupuncture & Meridian Science Research Center, College of Oriental Medicine, Kyung-Hee University)
  • Published : 2007.10.30

Abstract

Gamma-aminobutyric acid (GABA) is a non-protein amino acid. It is well known for its role as an inhibitory neurotransmitter of developing and operating nervous systems in brains. In this study, a novel function of GABA in the healing process of cutaneous wounds was presented regarding anti-inflammation and fibroblast cell proliferation. The cell proliferation activity of GABA was verified through an MTT assay using murine fibroblast NIH3T3 cells. It was observed that GABA significantly inhibited the mRNA expression of iNOS, IL-$1{\beta}$, and TNF-${\alpha}$ in LPS-stimulated RAW 264.7 cells. To evaluate in vivo activity of GABA in wound healing, excisional open wounds were made on the dorsal sides of Sprague-Dawley rats under anesthesia, and the healing of the wounds was apparently assessed. The molecular aspects of the healing process were also investigated by hematoxylineosin staining of the healed skin, displaying the degrees of re-epithelialization and linear alignment of the granulation tissue, and immunostaining and RT-PCR analyses of fibroblast growth factor and platelet-derived growth factor, implying extracellular matrix synthesis and remodeling of the skin. The GABA treatment was effective to accelerate the healing process by suppressing inflammation and stimulating re-epithelialization, compared with the epidermal growth factor treatment. The healing effect of GABA was remarkable at the early stage of wound healing, which resulted in significant reduction of the whole healing period.

Keywords

References

  1. Abe, Y., K. Inagaki, A. Fujiwara, and K. Kuriyama. 2000. Wound healing acceleration of a novel transforming growth factor-beta inducer, SEK-1005. Eur. J. Pharmacol. 408: 213-218 https://doi.org/10.1016/S0014-2999(00)00766-4
  2. Berlanga, J., D. Cibrian, I. Guillen, F. Freyre, J. S. Alba, P. Lopez-Saura, N. Merino, A. Aldama, A. M. Quintela, M. E. Triana, J. F. Montequin, H. Ajamieh, D. Urquiza, N. Ahmed, and P. J. Thornalley. 2005. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin. Sci. (Lond.) 109: 83-95 https://doi.org/10.1042/CS20050026
  3. Beyer, T. A., S. Werner, C. Dickson, and R. Grose. 2003. Fibroblast growth factor 22 and its potential role during skin development and repair. Exp. Cell Res. 287: 228-236 https://doi.org/10.1016/S0014-4827(03)00139-3
  4. Buckley, A., J. M. Davidson, C. D. Kamerath, T. B. Wolt, and S. C. Woodward. 1985. Sustained release of epidermal growth factor accelerates wound repair. Proc. Natl. Acad Sci. USA 82: 7340-7344
  5. Chao, J. C., K. Y. Liu, S. H. Chen, C. L. Fang, and C. W. Tsao. 2003. Effect of oral epidermal growth factor on mucosal healing in rats with duodenal ulcer. World J. Gastroenterol. 9: 2261-2265 https://doi.org/10.3748/wjg.v9.i10.2261
  6. Cho, J. Y., S. D. Kim, H. J. Park, J. H. Lim, H. I. Yun, S. C. Park, S. K. Kim, and M. H. Rhee. 2006. A comparison of the anti-inflammatory activity of surfactin A, B, C, and D from Bacillus subtilis. J. Microbiol. Biotechnol. 16: 1656-1659
  7. Choi, S., S.-R. Park, and T.-R. Heo. 2005. Inhibitory effect of Astragali radix on matrix degradation in human articular cartilage. J. Microbiol. Biotechnol. 15: 1258-1266
  8. Coutinho, P., C. Qiu, S. Frank, C. M. Wang, T. Brown, C. R. Green, and D. L. Becker. 2005. Limiting burn extension by transient inhibition of connexin43 expression at the site of injury. Br. J. Plast. Surg. 58: 658-667 https://doi.org/10.1016/j.bjps.2004.12.022
  9. Denda, M., K. Inoue, S. Inomata, and S. Denda. 2002. Gamma-aminobutyric acid (A) receptor agonists accelerate cutaneous barrier recovery and prevent epidermal hyperplasia induced by barrier disruption. J. Invest. Dermatol. 119: 1041-1047 https://doi.org/10.1046/j.1523-1747.2002.19504.x
  10. Ehrlich, H. P. and T. Diez. 2003. Role for gap junctional intercellular communications in wound repair. Wound Repair Regen. 11: 481-489 https://doi.org/10.1046/j.1524-475X.2003.11616.x
  11. Fiszman, M. L., L. N. Borodinsky, and J. H. Neale. 1999. GABA induces proliferation of immature cerebellar granule cells grown in vitro. Dev. Brain Res. 115: 1-8 https://doi.org/10.1016/S0165-3806(99)00035-8
  12. Grossman, N., L. A. Binyamin, and L. Bodner. 2004. Effect of rat salivary glands extracts on the proliferation of cultured skin cells -- a wound healing model. Cell Tissue Bank. 5: 205-212
  13. Hung, W. S., C. L. Fang, C. H. Su, W. F. Lai, Y. C. Chang, and Y. H. Tsai. 2001. Cytotoxicity and immunogenicity of SACCHACHITIN and its mechanism of action on skin wound healing. J. Biomed. Mater. Res. 56: 93-100 https://doi.org/10.1002/1097-4636(200107)56:1<93::AID-JBM1072>3.0.CO;2-B
  14. Hwang, S. M., C. Y. Chen, S. S. Chen, and J. C. Chen. 2000. Chitinous materials inhibit nitric oxide production by activated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 271: 229-233 https://doi.org/10.1006/bbrc.2000.2602
  15. Ishikawa, T., H. Terai, T. Yamamoto, K. Harada, and T. Kitajima. 2003. Delivery of a growth factor fusion protein having collagen-binding activity to wound tissues. Artif. Organs 27: 147-154 https://doi.org/10.1046/j.1525-1594.2003.07009.x
  16. Jimenez, P. A. and S. E. Jimenez. 2004. Tissue and cellular approaches to wound repair. Am. J. Surg. 187: 56S-64S https://doi.org/10.1016/S0002-9610(03)00305-2
  17. Kanno, S.-I., A. Shouji, A. Tomizawa, T. Hiura, Y. Osanai, M. Ujibe, Y. Obara, N. Nakahata, and M. Ishikawa. 2005. Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. J. Ethnopharmacol. 100: 289-294 https://doi.org/10.1016/j.jep.2005.03.009
  18. Korean Research Group for Care. 2002. Advances in Wound Care, pp. 43-83. Korea Medical Book Publisher, Seoul
  19. Kubo, K. and Y. Kuroyanagi. 2003. Spongy matrix of hyaluronic acid and collagen as a cultured dermal substitute: Evaluation in an animal test. J. Artif. Organs 6: 64-70 https://doi.org/10.1007/s100470300010
  20. Lee, D. H., B. J. Park, M. S. Lee, J. B. Choi, J. K. Kim, J. H. Park, and J.-C. Park. 2006. Synergistic effect of Staphylococcus aureus and LPS on silica-induced tumor necrosis factor production in macrophage cell line J774A.1. J. Microbiol. Biotechnol. 16: 136-140
  21. Lee, S. H., S. G. Ann, and S. G. Jung. 2004. Skin Barrier, pp.1-66. Ryo Moon Gak, Seoul
  22. Legrand, E. K. 1998. Preclinical promise of becaplermin (rhPDGF-BB) in wound healing. Am. J. Surg. 176: 48S-54S https://doi.org/10.1016/S0002-9610(98)00177-9
  23. Lim, Y., M. A. Levy, and T. M. Bray. 2006. Dietary supplementation of N-acetylcysteine enhances early inflammatory responses during cutaneous wound healing in protein malnourished mice. J. Nutr. Biochem. 17: 328-336 https://doi.org/10.1016/j.jnutbio.2005.08.004
  24. Oh, I. S. and H. G. Kim. 2004. Effect of fibroblast growth factor-2 on migration and proteinases secretion of human umbilical vein endothelial cells. J. Microbiol. Biotechnol. 14: 379-384
  25. Ornitz, D. M. and N. Itoh. 2001. Fibroblast growth factors. Genome Biol. 2: 3005.1-3005.12
  26. Qiu, C., P. Coutinho, S. Frank, S. Franke, L. Y. Law, P. Martin, C. R. Green, and D. L. Becker. 2003. Targeting connexin43 expression accelerates the rate of wound repair. Curr. Biol. 13: 1697-1703 https://doi.org/10.1016/j.cub.2003.09.007
  27. Represa, A. and Y. Ben-Ari. 2005. Trophic actions of GABA on neuronal development. Trends Neurosci. 28: 278-283 https://doi.org/10.1016/j.tins.2005.03.010
  28. Stoebner, P. E., P. Carayon, G. Penarier, N. Frechin, G. Barneon, P. Casellas, J. P. Cano, J. Meynadier, and L. Meunier. 1999. The expression of peripheral benzodiazepine receptors in human skin: The relationship with epidermal cell differentiation. Br. J. Dermatol. 140: 1010-1016 https://doi.org/10.1046/j.1365-2133.1999.02896.x
  29. Sugihara, A., K. Sugiura, H. Morita, T. Ninagawa, K. Tubouchi, R. Tobe, M. Izumiya, T. Horio, N. G. Abraham, and S. Ikehara. 2000. Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. Proc. Soc. Exp. Biol. Med. 225: 58-64
  30. Townsend. 1997. Sabiston's Textbook of Surge PP, pp. 279-303. 15th Ed. W. B. Saunders Company, Philadelphia
  31. Ueno, H., H. Yamada, I. Tanaka, N. Kaba, M. Matsuura, M. Okumura, T. Kadosawa, and T. Fujinaga. 1999. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20: 1407-1414 https://doi.org/10.1016/S0142-9612(99)00046-0
  32. Yusof, N. L., A. Wee, L. Y. Lim, and E. Khor. 2003. Flexible chitin films as potential wound-dressing materials: Wound model studies. J. Biomed. Mater. Res. A 66: 224-232