Extracellular Secretion of a Maltogenic Amylase from Lactobacillus gasseri ATCC33323 in Lactococcus lactis MG1363 and its Application on the Production of Branched Maltooligosaccharides

  • Cho, Mee-Hyun (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Park, Sang-Eun (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Lee, Myung-Hun (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Ha, Suk-Jin (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Kim, Hae-Yeong (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Kim, Myo-Jeong (Department of Food Science and Biotechnology, University of Inje) ;
  • Lee, Sung-Joon (Division of Food Science, College of Life Science & Biotechnology, Korea University, and Institute of Biomedical Science & Food Safety) ;
  • Madsen, Soren M. (Bioneer A/S) ;
  • Park, Cheon-Seok (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University)
  • Published : 2007.09.30

Abstract

A maltogenic amylase gene from Lactobacillus gasseri ATCC33323 (LGMA) was expressed in Lactococcus lactis MG1363 using the P170 expression system. The successful production of recombinant LGMA (rLGMA) was confirmed by the catalytic activity of the enzyme in liquid and solid media. The N-terminal amino acid sequencing analysis of the rLGMA showed that it was Met-Gln-Leu-Ala-Ala-Leu-, which was the same as that of genuine protein, meaning the signal peptide was efficiently cleaved during secretion to the extracellular milieu. The optimal reaction temperature and pH of rLGMA ($55^{\circ}C$ and pH 5, respectively) and enzymatic hydrolysis patterns on various substrates (${\beta}$-cyclodextrin, starch, and pullulan) supported that rLGMA was not only efficiently secreted from the Lactococcus lactis MG1363 but was also functionally active. Finally, the branched maltooligosaccharides were effectively produced from liquefied com starch, by using rLGMA secreted from Lactococcus lactis, with a yield of 53.1%.

Keywords

References

  1. Aires, K. A., A. M. Cianciarullo, S. M. Carneiro, L. L. Villa, E. Boccardo, G. Perez-Martinez, I. Perez-Arellano, M. L. Oliveira, and P. L. Ho. 2006. Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells. Appl. Environ. Microbiol. 72: 745-752 https://doi.org/10.1128/AEM.72.1.745-752.2006
  2. Bredmose. L., S. M. Madsen, A. Vrang, P. Ravn, M. G. Johnsen, J. Glenting, J. Arnau, and H. Israelsen. 2001. Development of a heterologous gene expression system for use in Lactococcus lactis, pp. 269-275. In O.-W. Merten et. al. (eds.), Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. Kluwer Academic Press, Dordrecht, The Netherlands
  3. Crittenden, R. G. and M. J. Playne. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-360 https://doi.org/10.1016/S0924-2244(96)10038-8
  4. Dieye, Y., S. Usai, F. Clier, A. Gruss, and J. C. Piard. 2001. Design of a protein-targeting system for lactic acid bacteria. J. Bacteriol. 183: 4157-4166 https://doi.org/10.1128/JB.183.14.4157-4166.2001
  5. Gasson, M. J. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9
  6. Grajek, W., A. Olejnik, and A. Sip. 2005. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim. Pol. 52: 665-671
  7. Holo, H. and I. F. Nes. 1989. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55: 3119-3123
  8. Hur, H. J., K. W. Lee, H. Y. Kim, D. K. Chung, and H. J. Lee. 2006. In vitro immunopotentiating activities of cellular fractions of lactic acid bacteria isolated from kimchi and bifidobacteria. J. Microbiol. Biotechnol. 16: 661-666
  9. Jeong, D. W., J. H. Lee, K. H. Kim, and H. J. Lee. 2006. Development of a food-grade integration vector for heterologous gene expression and protein secretion in Lactococcus lactis. J. Microbiol. Biotechnol. 16: 1799-1808
  10. Kim, J. W., H. J. Cha, T. K. Cheong, and K. H. Park. 1997. Molecular and enzymatic properties of novel maltogenic amylases capable of producing branched oligosaccharides (BOS). Food Sci. Biotechnol. 6: 67-73
  11. Kim, S. J., D. Y. Jun, C. H. Yang, and Y. H. Kim. 2006. Cloning and expression of hpaA gene of Korean strain Helicobacter pylori K51 in oral vaccine delivery vehicle Lactococcus lactis subsp. lactis MG1363. J. Microbiol. Biotechnol. 16: 318-324
  12. Konings, W. N., J. Kok, O. P. Kuipers, and B. Poolman. 2000. Lactic acid bacteria: The bugs of the new millennium. Curr. Opin. Microbiol. 3: 276-282 https://doi.org/10.1016/S1369-5274(00)00089-8
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  14. Lee, H. M. and Y. H. Lee. 2006. Isolation of Lactobacillus plantarum from kimchi and its inhibitory activity on the adherence and growth of Helicobacter pylori. J. Microbiol. Biotechnol. 16: 1513-1517
  15. Lee, H. S., J. H. Auh, H. G. Yoon, M. J. Kim, J. H. Park, S. S. Hong, M. H. Kang, T. J. Kim, T. W. Moon, J. W. Kim, and K. H. Park. 2002. Cooperative action of $\alpha$-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production. J. Agric. Food Chem. 50: 2812-2817 https://doi.org/10.1021/jf011529y
  16. Lin, D. C. 2003. Probiotics as functional foods. Nutr. Clin. Pract. 18: 497-506 https://doi.org/10.1177/0115426503018006497
  17. Loir, Y. L., V. Azevedo, S. C. Oliveira, D. A. Freitas, A. Miyoshi, L. G. Bermudez-Humaran, S. Nouaille, L. A. Ribeiro, S. Leclercq, J. E. Gabriel, V. D. Guimaraes, M. N. Oliveira, C. Charlier, M. Gautier, and P. Langella. 2005. Protein secretion in Lactococcus lactis: An efficient way to increase the overall heterologous protein production. Microb. Cell Fact. 4: 1-13 https://doi.org/10.1186/1475-2859-4-1
  18. Madsen, S. M., J. Arnau, A. Vrang, M. Givskov, and H. Israelsen. 1999. Molecular characterization of the pHinducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol. Microbiol. 32: 75-87 https://doi.org/10.1046/j.1365-2958.1999.01326.x
  19. Miller, C. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  20. Oh, K. W., M. J. Kim, H. Y. Kim, B. Y. Kim, M. Y. Baik, J. H. Auh, and C. S. Park. 2005. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol. Lett. 252: 175-181 https://doi.org/10.1016/j.femsle.2005.08.050
  21. Park, K. H., T. J. Kim, T. K. Cheong, J. W. Kim, B. H. Oh, and B. Svensson. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the $\alpha$-amylase family. Biochim. Biophys. Acta 1478: 165-185 https://doi.org/10.1016/S0167-4838(00)00041-8
  22. Parvez, S., K. A. Malik, S. A. Kang, and H. Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185 https://doi.org/10.1111/j.1365-2672.2006.02963.x
  23. Ravn, P., J. Arnau, S. M. Madsen, A. Vrang, and H. Israelsen. 2003. Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 14: 2193-2201
  24. Reid, G., J. Jass, M. T. Sebulsky, and J. K. McCormick. 2003. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 16: 658-672 https://doi.org/10.1128/CMR.16.4.658-672.2003
  25. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  26. Saxelin, M., S. Tynkkynen, T. Mattila-Sandholm, and W. M. de Vos. 2005. Probiotic and other functional microbes: From markets to mechanisms. Curr. Opin. Biotechnol. 16: 204-211 https://doi.org/10.1016/j.copbio.2005.02.003
  27. Terzaghi, B. E. and W. E. Sandine. 1975. Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 29: 807-813
  28. Yang, S. J., H. S. Lee, C. S. Park, Y. R. Kim, T. W. Moon, and K. H. Park. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an $\alpha$-amylase and a cyclodextrin-hydrolyzing enzyme. Appl. Environ. Microbiol. 70: 5988-5995 https://doi.org/10.1128/AEM.70.10.5988-5995.2004