Isolation and Characterization of Exopolysaccharide-Producing Bacteria from Korean Fermented Vegetables

전통 침채류 유래 다당 생산균의 분리 특성

  • Kwon, Tae-Yeon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shim, Sang-Min (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Heo, Min-Young (Department of Food Science and Biotechnology, Kyonggi University) ;
  • An, Doo-Hyun (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
  • 권태연 (경기대학교 식품생물공학과) ;
  • 심상민 (경기대학교 식품생물공학과) ;
  • 허민영 (경기대학교 식품생물공학과) ;
  • 안두현 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과) ;
  • 이종훈 (경기대학교 식품생물공학과)
  • Published : 2007.09.28

Abstract

Four bacteria producing viscous exopolysaccharides (EPSs) were isolated from Korean fermented vegetables (Cucumber kimchi, Young radish kimchi, Green onion kimchi) using a selection medium intended for isolating bacteria with tannin-degrading activity. They were identified phylogenetically by 16S rDNA sequence analysis and found to be very close to Enterobacter cowan ii, Escherichia senegalensis, Enterobacter asburiae, and Enterobacter ludwigii. Strain CK31, the most efficient EPS-producer, produced a heteropolysaccharide with an approximate molecular weight of 420 kDa. The neutral sugar fraction of the EPS was composed of rhamnose, fucose, arabinose, mannose, galactose, and glucose.

탄닌 분해균 선발배지를 이용하여 탄닌 분해활성 보유 유산균을 발효 침채류로부터 분리하는 과정에서 오이소박이, 파김치, 총각김치로부터 다당류로 추정되는 점질물질을 생산하는 균주 4종을 선발하였다. 이들 균주의 165 rDNA 염기서열에 의한 계통유전학적 동정 결과, CK31은 Enterobacter cowanii, CK32는 Escherichia senegalensis, YK5는 Enterobacter asburiae, GK23은 Enterobacter ludwigii와 99% 이상의 매우 높은 상동성을 나타내었다. 가장 많은 양의 점질 물질을 세포 외로 생성하는 CK3l 균주는 rhamnose, fucose, arabinose, mannose, galactose, glucose의 중성당 조성을 가지고 있는 분자량 약 420 kDa heteropolysaccharide를 생산하는 것으로 나타났다.

Keywords

References

  1. Bae, I. and J.-W. Huh. 2002. Isolation of Lactobacillus ssp. producing exopolysaccharide and optimization of its production. Korean J. Biotechnol. Bioeng. 17: 169-175
  2. Cescutti, P., A. Kallioinen, G. Impallomeni, R. Toffanin, P. Pollesello, M. Leisola, and T. Eerikainen. 2005. Structure of the exopolysaccharide produced by Enterobacter amnigenus. Carbohydr. Res. 340: 439-447 https://doi.org/10.1016/j.carres.2004.12.008
  3. Cho, Y. R., J. Y. Chang, and H. C. Chang. 2007. Production of $\gamma$-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbial. Biotechnol. 17: 104-109
  4. Eom, H.-J., D. M. Seo, H. S. Yoon, H. B. Lee, and N. S. Han. 2002. Strain selection of psychrotrophic Leuconostoc mesentera ides producing a highly active dextransucrase from kimchi. Korean J. Food Sci. Technol. 34: 1085-1090
  5. Isobe, Y., Y. Matsumoto, K. Yokoigawa, and H. Kawai. 2001. Properties of an extracellular polysaccharide produced by a strain of Enterobacter isolated from pond water. Biosci. Biotechnol. Biochem. 65: 1399-1401 https://doi.org/10.1271/bbb.65.1399
  6. Jones, T. M. and P. Albersheim. 1972. A gas chromatography method for the determination of aldose and monic acid constituents of plant cell wall polysaccharide. Plant Physiol. 49: 926-936 https://doi.org/10.1104/pp.49.6.926
  7. Kim, B.-J., B.-H. Min, J. Kim, and H.-U. Han. 2001. Isolation of dextran-producing Leuconostoc lactis from kim chi. J. Microbiol. 39: 11-16
  8. Kim, D. and D.-W Kim. 1999. Facile purification and characterization of dextransucrase from Leuconostoc mesenteroides B-512FMCM. J. Microbiol. Biotechnol. 9: 219-222
  9. Kim, D.-J. and S.-Y. Lee. 2001. Isolation of the exopolysaccharide producing Enterobacter sp. and physicochemical properties of the polysaccharide produced by this strain. Korean J. Biotechnol. Bioeng. 16: 370-375
  10. Kwak, G-S., S.-K. Kim, and H.-K. Jun. 2001. Purification and characterization of bacteriocin J105 produced by Lactococcus lac tis subsp. lactis J105 isolated from kim chi. J. Microbiol. Biotechnol. 11: 275-280
  11. Kwon, D. Y., M. Koo, C. R. Ryoo, C.-H. Kang, K.-H. Min, and W. J. Kim. 2002. Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12: 96-105
  12. Lee, C.-W, C.-Y. Ko, and D.-M. Ha. 1992. Microfloral changes of the lactic acid bacteria during kim chi fermentation and identification of the isolate. Korean J. Appl. Microbiol. Biotechnol. 20: 102-109
  13. Lee, S. Y. 1992. Current research status of food related microbial polysaccharides. The Microorganism and Industry 18: 33-40
  14. Min, S.-G, J.-H. Kim, S. Kim, H. S. Shin, G-H. Hong, D.-G Oh, and K.-N. Kim. 2003. Manufactures of functional kimchi using Bifidobacterium strain producing conjugated linoleic acid (CLA) as starter. Korean J. Food Sci. Technol. 35: 111-114
  15. Osawa, R. 1990. Formation ofa clear zone on tannin-treated brain heart infusion agar by Streptococcus sp. isolated from feces of koalas. Appl. Environ. Microbiol. 56: 829-831
  16. Page, R. D. 1996. Treeview: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358
  17. Shin, D.-H, M.-S. Kim, J.-S. Han, D.-K. Lim, and W-S. Bak. 1996. Changes of chemical composition and microflora in commercial kimchi. Korean J. Food Sci. Technol. 28: 137-145