Isolation and Identification of High Cellulolytic Bacteria from Spent Mushroom Substrate and Determination of Optimal Medium Conditions for the Growth

버섯폐배지로부터 섬유소분해력이 높은 중온성 균의 분리 및 균주생산을 위한 배지조건의 최적화

  • Kim, Young-Il (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University) ;
  • Jung, Se-Hyung (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University) ;
  • Seok, Joon-San (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University) ;
  • Yang, Si-Yong (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University) ;
  • Huh, Jeong-Weon (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University) ;
  • Kwak, Wan-Sup (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University)
  • 김영일 (건국대학교 자연과학대학 생명자원환경과학부 축산학) ;
  • 정세형 (건국대학교 자연과학대학 생명자원환경과학부 축산학) ;
  • 석준상 (건국대학교 자연과학대학 생명자원환경과학부 축산학) ;
  • 양시용 (건국대학교 자연과학대학 생명자원환경과학부 축산학) ;
  • 허정원 (건국대학교 자연과학대학 생명자원환경과학부 축산학) ;
  • 곽완섭 (건국대학교 자연과학대학 생명자원환경과학부 축산학)
  • Published : 2007.09.28

Abstract

This study was conducted to isolate and identify bacteria producing xylanase and cellulase from spent mushroom substrates and to determine the optimal medium conditions for their growth. Bacteria showing high xylanase and carboxymethyl cellulase activities and low protease and amylase activities were strain 201-3 and strain 206-3. Strain 201-3 was identified as Enterobacter ludwigii and named Ent. ludwigii KU201-3. 206-3 was identified as Bacillus cereus and named B. cereus KU206-3. The optimal medium condition of Ent. ludwigii KU201-3 was obtained when 1%(w/v) of soybean meal and 3%(w/v) of sucrose were used as nitrogen and carbon source, respectively. That of B. cereus KU206-3 was obtained when 3%(w/v) of soybean meal and 1%(w/v) of molasses were used as nitrogen and carbon sources, respectively.

본 연구는 톱밥주원료 버섯폐배지의 효과적 사료화를 위한 균주개발을 목적으로 버섯폐배지로부터 섬유소분해력이 높은 중온성 균주의 분리 동정하고 균주생산을 위한 배지의 최적화 조건 도출을 위하여 실시하였다. Xylanase와 CMCase의 활력이 높으면서 amylase와 pretense의 활력이 낮아 선발된 균은 201-3, 206-3번이며, 동정결과 201-3은 Enteerobacter ludwigii로 동정되어 Ent. ludwigii KU201-3으로, 206-3은 Bacillus cereus로 동정되어 B. cereus KU206-3으로 명명하였다. 균주생산을 위한 적정 액상배양조건은 Ent. ludwigii KU201-3 질소원으로 soybean meal 1%, 탄소원으로 sucrose 3%가, B. cereus KU206-3은 질소원으로 soybean meal 3%, 탄소원으로 molasses 1%인 것으로 나타났다.

Keywords

References

  1. Campbell, G. L. and M. R. Bedford. 1992. Enzyme applications for monogastric feeds: A rewiew. Can. J. Anim. Sci. 72: 449 https://doi.org/10.4141/cjas92-058
  2. Claus, D. and R. C. W. Berkeley. 1986. Genus Bacillus, PP1105-1139. In Sneath, P. H. A. (ed), Bergey's Manual of Systematic Bacteriology, Vol. 2, Williams and Wilkins, Baltimore, MD
  3. Ha, H. C. 2001. Purification and characterization of manganese peroxidase from Pleurotus ostreatus. Proc. Asian Mycol. Symp.209-214
  4. Ha, J. K., S. S. Lee, Y. S. Moon and C. H. Kim. 2005. Ruminant nutrition and physiology. Seoul National Univ. Press
  5. Jung, W. H., S. Y. Yang, M. D. Song, J, K. Ha and C. W. Kim. 2003. Isolaton of Bacillus sp. producing xylanase and cellulase and optimization of medium conditions of its production. Kor. J. Appl. Microbiol. Biotechnol. 31: 383-388
  6. Khasin, A., I. Alchanati and Y. Shoham. 1993. Purification and characterization of a thermostable xylanase from Bacilus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725-1730
  7. Kim, Y. I., J. S. Bae, J. W. Huh and W. S. Kwak. 2007. Monitoring of feed-nutritional components, toxic heavy metals and pesticide residues in mushroom substrates according to bottle type and vinyl bag type cultivation. Kor. J. of Ani. Sci. 49: 67-78 https://doi.org/10.5187/JAST.2007.49.1.067
  8. Makela, M., S. Galkin, A. Hatakka and T. Lundell. 2002. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technology 30: 542-549 https://doi.org/10.1016/S0141-0229(02)00012-1
  9. Miller, G, L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  10. Miller, L. T. 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters. including hydroxy acid. J. Clin. Microbiol. 18: 861-867
  11. Morohoshi, N., T. Nakamura and T. Haraguchi. 1985. Degradation of lignin by the extracellular enzymes of Tramates versicolor(I). Tokyo Univ. of Agri. and Tech. 21: 101- 105
  12. Thompson, J. D., D. Q Higgins, and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalies and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  13. Tuomela, M., M. Vikman, A. Hatakka and M. Itavaara. 2000. Biodegradation of lignin in a compost enviroment:a review. Bioresource Tech. 72: 169-183 https://doi.org/10.1016/S0960-8524(99)00104-2
  14. Yang, S. Y., M. D. Song, O, H. Kim, and C. W. Kim. 2001. Isolation of Bacillus sp. producing multi-enzyme and optimization of medium conditions for its production Using Feedstuffs for Probiotics. Kor. J. Appl. Microbiol. Biotechnol. 29: 110-114