Feasibility Verification for the Basic Shape of FRP Bridge Decks Using Optimization Algorithm

최적설계 알고리즘을 이용한 교량용 FRP바닥판의 기본 단면형상 제안

  • 박기태 (한국건설기술연구원 구조연구부) ;
  • 황윤국 (한국건설기술연구원 구조연구부) ;
  • 이영호 (한국건설기술연구원 구조연구부) ;
  • 정진우 (한국건설기술연구원 구조연구부)
  • Received : 2006.06.01
  • Published : 2007.03.30

Abstract

A large number of FRP decks are already in service worldwide because the lighter FRP-based bridge decks are ideal for rapid construction to reduce the dead load of superstructures. And the proper design process is demanded for the effective FRP deck application. In this paper, to get the basic prototype of FRP bridge decks, the ratio of individual parameters, which compose the specification of FRP bridge decks, are determined by a finite element analysis. In addition, optimum FRP deck shapes are determined considering complex constraints and material properties of bi-directional characteristics. Upon these results, the prototype of FRP bridge decks is validated.

FRP바닥판은 경량이기 때문에 신속한 시공이 가능하고, 고정하중을 경감시킬 수 있다는 장점이 있어 전 세계적으로 시공 실적이 점차 증가하고 있다. 본 논문에서는 효과적인 FRP바닥판의 적용을 위하여 유한요소해석을 통하여 FRP바닥판을 구성하는 부재별 적정 형상비를 결정하였으며, 향후 FRP바닥판 설계시 기초자료로 활용할 수 있도록 하고자 하였다. 또한, FRP의 이방적 재료 특성과 복잡한 제약조건을 고려한 FRP바닥판의 최적설계를 수행하였으며, 그 결과를 토대로 제안된 FRP바닥판의 기본 단면 형상에 대한 검증을 수행하였다.

Keywords

References

  1. AASHTO., "LRFD Bridge Design Specifications. Third Edition," American Association of State Highway and Transportation Officials, U.S.A. 2004.
  2. Bathe, K. J., "Finite element procedures," PRENTICE HALL, 1996.
  3. EUROCOMP., "Structural Design of Polymer Composites-EUROCOMP Design Code and Handbook," The European Structural Polymeric Composites Group, Edited by Clarke, J. L., E & FN SPON, UK. 1996.
  4. Gan, L. H., Ye, L. and Mai, Y., "Design and evaluation of various section profiles for pultruded deck panels," Journal of Composite Structures, 47, 1999, p. 719-725. https://doi.org/10.1016/S0263-8223(00)00042-8
  5. Godwin G., "Overview of fiber-reinforced composite bridges in the United States and implications for European market development," In: Proc Lightweight Bridge Decks-European Bridge Engineering Conference, Rotterdam, Netherlands, March, 2003.
  6. Karbhari, V., Seible, F., Hegemier, G. and Zhao, L., "Fiber reinforced composite decks for infrastructure renewal-results and issues," Proceedings, International Composite Expo, Session 3-C, 1997, pp. 1-6.
  7. Kim. D. H., "Numerical analysis and design of structure-including FRP structure," Technical paper, Journal of the Korean Society of Civil Engineers, KSCE, Vol. 37, No. 1. (in Korean), 1989.
  8. Korea Institute of Construction Technology (KICT)., "Development of FRP bridge decks," KICT 2002-050 (in Korean), 2002.
  9. Korea Institute of Construction Technology (KICT)., "Development of FRP bridge decks," KICT 2003-050 (in Korean), 2003.
  10. Lopez-Anido, R., Gangarao, H., Vedam, V. and Overby, N., "Design and evaluation of a modular FRP bridge deck," Proceedings, International Composite Expo, Session 3-E, 1997, pp. 1-6.
  11. Ministry of Construction and Transportation (MOCT)., "Design manuals for highway bridges: typical drawings," No. 42000-58710-67-9926. (in Korean), 2000.
  12. Ministry of Construction and Transportation (MOCT)., "Standards specifications for highway bridges (in Korean)," 2005.
  13. Park K. T., Kim S. H., Lee Y. H., and Hwang Y. K., "Pilot test on a developed GFRP bridge deck," Journal of Composite Structures, Vol. 70, Issue 1, 2005, pp. 564-575.
  14. Shen, Y., Xu, M., Chandrashekhara, K., and Nanni, A., "A finite element analysis of FRP tube assemblies for bridge decks," Advanced Composite Materials, Vol. 11, No. 2, 2001, pp. 151-170. https://doi.org/10.1163/156855102760410342