Field Emission from Carbon Nanotubes Etched by a dc Plasma

Cho, Hyun-Jin;Lee, Nae-Sung;Jang, In-Goo;Uh, Hyung-Soo;Hong, Jin-Pyo

  • Published : 20070600

Abstract

Abstract This study investigates the effect of NH$_3$ gas upon the growth of carbon nanotubes (CNTs) using thermal chemical vapor deposition. It is considered that the CNT synthesis is thought to occur mainly through two steps, clustering of catalyst particles followed by growth of CNTs. We, thus, introduced NH$_3$ during either an annealing or growth step. When NH$_3$ was fed only during annealing, CNTs grew longer and were more highly crystalline with their diameters unchanged. Addition of NH$_3$ during growth, however, resulted in shorter CNTs with lower crystallinity and increased diameters. Vertically aligned, highly populated CNT samples showed poor field emission characteristics, leading us to apply post-treatment onto the CNT surface. The CNTs were etched back by dc plasma of N$_2$ to reduce the population density and the radius of curvatures of CNTs, which resulted in a considerable improvement of the field emission characteristics.

Keywords

References

  1. S. Iijima, Nature 354, 56 (1991)
  2. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee and J. E. Fischer, Nature 388, 756 (1997)
  3. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, D. T. Colbert, G. Scuseria, D. Toma'nek, J. E. Fisher and R. E. Smalley, Science 273, 483 (1996)
  4. M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto and D. R. M. Walton, Nature 388, 52 (1997)
  5. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, Science 282, 1105 (1998)
  6. W. Z. Li, S. S. Xie, L. X. Qain, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G.Wang, Science 274, 1701 (1996)
  7. W. A. de Heer, A. Chatelain and D. Ugarte, Science 270, 1179 (1995)
  8. M. J. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin and S. T. Kim, Thin Solid Films 398, 150 (2001) https://doi.org/10.1016/S0040-6090(01)01295-0
  9. K. C. Park, H. S. Yoon, J. H. Ryu, S. H. Lim, J. H. Moon and J. Jang, J. Korean Phys. Soc. 48, 1365 (2006)
  10. Y. T. Jang, J. H. Ahn, Y. H. Lee and B. K. Ju, Chem. Phys. Lett. 372, 745 (2003) https://doi.org/10.1016/S0009-2614(03)00501-3
  11. C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park and J. M. Kim, Chem. Phys. Lett. 312, 461 (1999)
  12. C. J. Lee, S. C. Lyu, H. W. Kim, J. H. Lee and K. I. Cho, Chem. Phys. Lett. 359, 115 (2002)
  13. J. H. Han, C. H. Lee, D. Y. Jung, C. W. Yang, J. B. Yoo, C. Y. Park, H. J. Kim, S. G. Yu, W. Yi, G. S. Park, I. T. Han, N. S. Lee and J. M. Kim, Thin Solid Films 409, 120 (2002)
  14. E. Hernandez, C. Goze, P. Bernier and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998)
  15. J. W. Jang, C. E. Lee, S. C. Lyu, T. J. Lee and C. J. Lee, Appl. Phys. Lett. 84, 2877 (2004) https://doi.org/10.1063/1.1697624
  16. A. Gohel, K. C. Chin, Y. W. Zhu, C. H. Sow and A. T. S. Wee, Carbon 43, 2530 (2005) https://doi.org/10.1016/j.carbon.2005.04.012
  17. Y. Liu, L. Liu, P. Liu, L. Sheng and S. Fan, Dia. & Rel. Mat. 13, 1609 (2004) https://doi.org/10.1016/j.diamond.2004.01.014
  18. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000)
  19. H. S. Uh, S. S. Park, H. W. Noh, S. W. Ko, J. D. Lee and C. G. Lee, J. Korean Phys. Soc. 47, S408 (2005)
  20. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London Ser. A. 119, 173 (1928)