A Synaptic Model for Pain: Long-Term Potentiation in the Anterior Cingulate Cortex

  • Zhuo, Min (Department of Physiology, Faculty of Medicine, University of Toronto Center for the Study of Pain, University of Toronto)
  • Received : 2007.02.25
  • Accepted : 2007.02.27
  • Published : 2007.06.30

Abstract

Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.

Keywords

Acknowledgement

Supported by : NIH

References

  1. Bagni, C. and Greenough, W. T. (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376-387
  2. Barnes, C. A. (1995) Involvement of LTP in memory: are we 'searching under the street light'? Neuron 15, 751-754 https://doi.org/10.1016/0896-6273(95)90166-3
  3. Bliss, T. V. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39 https://doi.org/10.1038/361031a0
  4. Botvinick, M. M., Cohen, J. D., and Carter, C. S. (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539-546 https://doi.org/10.1016/j.tics.2004.10.003
  5. Bredt, D. S. and Nicoll, R. A. (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40, 361-379 https://doi.org/10.1016/S0896-6273(03)00640-8
  6. Calejesan, A. A., Kim, S. J., and Zhuo, M. (2000) Descending facilitatory modulation of a behavioral nociceptive response by stimulation in the adult rat anterior cingulate cortex. Eur. J. Pain. 4, 83-96 https://doi.org/10.1053/eujp.1999.0158
  7. Carroll, R. C., Beattie, E. C., von Zastrow, M., and Malenka, R. C. (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2, 315-324 https://doi.org/10.1038/35072500
  8. Casey, K. L. (1999) Forebrain mechanisms of nociception and pain: analysis through imaging. Proc. Natl. Acad. Sci. USA 96, 7668-7674
  9. Chai, S. C., Holahan, M. R., Shyu, B. C., and Wang, C. C. (2006) Differential patterns of extracellular signal-regulated kinase-1 and -2 phosphorylation in rat limbic brain regions after short-term and long-term inhibitory avoidance learning. Neuroscience 137, 1321-1330 https://doi.org/10.1016/j.neuroscience.2005.10.009
  10. Dalley, J. W., Cardinal, R. N., and Robbins, T. W. (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771-784 https://doi.org/10.1016/j.neubiorev.2004.09.006
  11. de Tommaso, M., Losito, L., Difruscolo, O., Libro, G., Guido, M., et al. (2005) Changes in cortical processing of pain in chronic migraine. Headache 45, 1208-1218 https://doi.org/10.1111/j.1526-4610.2005.00244.x
  12. Derbyshire, S. W., Whalley, M. G., Stenger, V. A., and Oakley, D. A. (2004) Cerebral activation during hypnotically induced and imagined pain. Neuroimage 23, 392-401 https://doi.org/10.1016/j.neuroimage.2004.04.033
  13. Eisenberger, N. I., Lieberman, M. D., and Williams, K. D. (2003) Does rejection hurt? An FMRI study of social exclusion. Science 302, 290-292 https://doi.org/10.1126/science.1089134
  14. Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L., and Silva, A. J. (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881-883 https://doi.org/10.1126/science.1094804
  15. Guillaud, L., Setou, M., and Hirokawa, N (2003) KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J. Neurosci. 23, 131-140 https://doi.org/10.1523/JNEUROSCI.23-01-00131.2003
  16. Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., et al. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262-2267 https://doi.org/10.1126/science.287.5461.2262
  17. Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108 https://doi.org/10.1146/annurev.ne.17.030194.000335
  18. Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R., and Dostrovsky, J. O. (1999) Pain-related neurons in the human cingulate cortex. Nat. Neurosci. 2, 403-405 https://doi.org/10.1038/8065
  19. Ji, R. R., Kohno, T., Moore, K. A., and Woolf, C. J. (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26, 696-705 https://doi.org/10.1016/j.tins.2003.09.017
  20. Jin, P., Zarnescu, D. C., Zhang, F., Pearson, C. E., Lucchesi, J. C., et al. (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39, 739-747 https://doi.org/10.1016/S0896-6273(03)00533-6
  21. Johansen, J. P. and Fields, H. L. (2004) Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7, 398-403 https://doi.org/10.1038/nn1207
  22. Johansen, J. P., Fields, H. L., and Manning, B. H. (2001) The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 98, 8077-8082
  23. Kandel, E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030-1038 https://doi.org/10.1126/science.1067020
  24. Ko, S. W., Ao, H. S., Mendel, A. G., Qiu, C. S., Wei, F., et al. (2005a) Transcription factor Egr-1 is required for long-term fear memory and anxiety. Sheng Li Xue Bao 57, 421-432
  25. Ko, S. W, Vadakkan, K. I., Ao, H., Gallitano-Mendel, A., Wei, F., et al. (2005b) Selective contribution of Egr1 (zif/268) to persistent inflammatory pain. J. Pain 6, 12-20 https://doi.org/10.1016/j.jpain.2004.10.001
  26. Koyama, T., Kato, K., Tanaka, Y. Z., and Mikami, A. (2001) Anterior cingulate activity during pain-avoidance and reward tasks in monkeys. Neurosci. Res. 39, 421-430 https://doi.org/10.1016/S0168-0102(01)00197-3
  27. Lee, D. E., Kim, S. J., and Zhuo, M. (1999) Comparison of behavioral responses to noxious cold and heat in mice. Brain Res. 845, 117-121 https://doi.org/10.1016/S0006-8993(99)01956-3
  28. Lei, L. G., Sun, S., Gao, Y. J., Zhao, Z. Q., and Zhang, Y. Q. (2004) NMDA receptors in the anterior cingulate cortex mediate pain-related aversion. Exp. Neurol. 189, 413-421 https://doi.org/10.1016/j.expneurol.2004.06.012
  29. Li, P., Wilding, T. J., Kim, S. J., Calejesan, A. A., Huettner, J. E., et al. (1999) Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161-164 https://doi.org/10.1038/16469
  30. Liauw, J., Wang, G. D., and Zhuo, M (2003) NMDA receptors contribute to synaptic transmission in anterior cingulate cortex of adult mice. Sheng Li Xue Bao 55, 373-380
  31. Liauw, J., Wu, L. J., and Zhuo, M. (2005) Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex. J. Neurophysiol. 94, 878-882 https://doi.org/10.1152/jn.01205.2004
  32. Malinow, R. and Malenka, R. C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103-126 https://doi.org/10.1146/annurev.neuro.25.112701.142758
  33. Merzenich, M. (1998) Long-term change of mind. Science 282, 1062-1063 https://doi.org/10.1126/science.282.5391.1062
  34. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529-540 https://doi.org/10.1016/0896-6273(94)90210-0
  35. Nicoll, R. A. and Malenka, R. C. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115-118 https://doi.org/10.1038/377115a0
  36. Nimchinsky, E. A., Vogt, B. A., Morrison, J. H., and Hof, P. R. (1995) Spindle neurons of the human anterior cingulate cortex. J. Comp. Neurol. 355, 27-37 https://doi.org/10.1002/cne.903550106
  37. Passafaro, M., Piech, V., and Sheng, M. (2001) Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917-926 https://doi.org/10.1038/nn0901-917
  38. Peoples, L. L. (2002) Neuroscience. Will, anterior cingulate cortex, and addiction. Science 296, 1623-1624 https://doi.org/10.1126/science.1072997
  39. Rainville, P., Bushnell, M. C., and Duncan, G. H. (2001) Representation of acute and persistent pain in the human CNS: potential implications for chemical intolerance. Ann. N Y Acad. Sci. 933, 130-141 https://doi.org/10.1111/j.1749-6632.2001.tb05820.x
  40. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., and Bushnell, M. C. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968-971 https://doi.org/10.1126/science.277.5328.968
  41. Sanders, G. S., Gallup, G. G., Heinsen, H., Hof, P. R., and Schmitz, C. (2002) Cognitive deficits, schizophrenia, and the anterior cingulate cortex. Trends Cogn. Sci. 6, 190-192 https://doi.org/10.1016/S1364-6613(02)01892-2
  42. Setou, M., Nakagawa, T., Seog, D. H., and Hirokawa, N. (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802 https://doi.org/10.1126/science.288.5472.1796
  43. Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., and Jan, L. Y. (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144-147 https://doi.org/10.1038/368144a0
  44. Shibata, H. (1993) Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J. Comp. Neurol. 330, 533-542 https://doi.org/10.1002/cne.903300409
  45. Sigurdsson, T., Doyere, V., Cain, C. K., and LeDoux, J. E. (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52, 215-227 https://doi.org/10.1016/j.neuropharm.2006.06.022
  46. Sikes, R. W. and Vogt, B. A. (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J. Neurophysiol. 68, 1720-1732 https://doi.org/10.1152/jn.1992.68.5.1720
  47. Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R. J., et al. (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157-1162 https://doi.org/10.1126/science.1093535
  48. Song, I. and Huganir, R. L. (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578-588 https://doi.org/10.1016/S0166-2236(02)02270-1
  49. Talbot, J. D., Marrett, S., Evans, A. C., Meyer, E., Bushnell, M. C., et al. (1991) Multiple representations of pain in human cerebral cortex. Science 251, 1355-1358 https://doi.org/10.1126/science.2003220
  50. Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401, 63-69 https://doi.org/10.1038/43432
  51. Tang, J., Ko, S., Ding, H. K., Qiu, C. S., Calejesan, A. A., et al. (2005) Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol. Pain 1, 6 https://doi.org/10.1186/1744-8069-1-16
  52. Tao, Y. X., Rumbaugh, G., Wang, G. D., Petralia, R. S., Zhao, C., et al. (2003) Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J. Neurosci. 23, 6703-6712 https://doi.org/10.1523/JNEUROSCI.23-17-06703.2003
  53. Teixeira, C. M., Pomedli, S. R., Maei, H. R., Kee, N., and Frankland, P. W. (2006) Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J. Neurosci. 26, 7555-7564 https://doi.org/10.1523/JNEUROSCI.1068-06.2006
  54. Toyoda, H., Wu, L. J., Zhao, M. G., Xu, H., Jia, Z., et al. (2007) Long-term depression requires postsynaptic AMPA GluR2 receptor in adult mouse cingulate cortex. J. Cell. Physiol. 211, 336-343 https://doi.org/10.1002/jcp.20940
  55. Vadakkan, K. I., Wang, H., Ko, S. W., Zastepa, E., Petrovic, M. J., et al. (2006) Genetic reduction of chronic muscle pain in mice lacking calcium/calmodulin-stimulated adenylyl cyclases. Mol. Pain 2, 7
  56. Wang, C. C. and Shyu, B. C. (2004) Differential projections from the mediodorsal and centrolateral thalamic nuclei to the frontal cortex in rats. Brain Res. 995, 226-235 https://doi.org/10.1016/j.brainres.2003.10.006
  57. Wang, G. D. and Zhuo, M. (2006) Forebrain NMDA receptors contribute to neuronal spike responses in adult mice. Sheng Li Xue Bao 58, 511-520
  58. Wei, F. and Zhuo, M. (2001) Potentiation of sensory responses in the anterior cingulate cortex following digit amputation in the anaesthetised rat. J. Physiol. 532, 823-833 https://doi.org/10.1111/j.1469-7793.2001.0823e.x
  59. Wei, F., Li, P., and Zhuo, M. (1999) Loss of synaptic depression in mammalian anterior cingulate cortex after amputation. J. Neurosci. 19, 9346-9354 https://doi.org/10.1523/JNEUROSCI.19-21-09346.1999
  60. Wei, F., Wang, G. D., Kerchner, G. A., Kim, S. J., Xu, H. M., et al. (2001) Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat. Neurosci. 4, 164-169 https://doi.org/10.1038/83993
  61. Wei, F., Qiu, C. S., Liauw, J., Robinson, D. A., Ho, N., et al. (2002a) Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat. Neurosci. 5, 573-579 https://doi.org/10.1038/nn0602-855
  62. Wei, F., Qiu, C. S., Kim, S. J., Muglia, L., Maas, J. W., et al. (2002b) Genetic elimination of behavioral sensitization in mice lacking calmodulin-stimulated adenylyl cyclases. Neuron 36, 713-726 https://doi.org/10.1016/S0896-6273(02)01019-X
  63. Wei, F., Xia, X. M., Tang, J., Ao, H., Ko, S., et al. (2003) Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J. Neurosci. 23, 8402-8409 https://doi.org/10.1523/JNEUROSCI.23-23-08402.2003
  64. Willemsen, R., Oostra, B. A., Bassell, G. J., and Dictenberg, J. (2004) The fragile X syndrome: from molecular genetics to neurobiology. Ment. Retard. Dev. Disabil. Res. Rev. 10, 60-67 https://doi.org/10.1002/mrdd.20010
  65. Wong, R. W., Setou, M., Teng, J., Takei, Y., and Hirokawa, N. (2002) Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 14500-14505
  66. Wu, L. J., Xu, H., Ren, M., and Zhuo, M. (2006) Genetic and pharmacological studies of GluR5 modulation of inhibitory synaptic transmission in the anterior cingulate cortex of adult mice. J. Neurobiol.
  67. Wu, L. J., Zhao, M. G., Toyoda, H., Ko, S. W., and Zhuo, M. (2005a) Kainate receptor-mediated synaptic transmission in the adult anterior cingulate cortex. J. Neurophysiol. 94, 1805-1813 https://doi.org/10.1152/jn.00091.2005
  68. Wu. L. J., Toyoda, H., Zhao, M. G., Lee, Y. S., Tang, J., et al. (2005b) Upregulation of forebrain NMDA NR2B receptors contributes to behavioral sensitization after inflammation. J. Neurosci. 25, 11107-11116 https://doi.org/10.1523/JNEUROSCI.1678-05.2005
  69. Wu, M. F., Pang, Z. P., Zhuo, M., and Xu, Z. C. (2005c) Prolonged membrane potential depolarization in cingulate pyramidal cells after digit amputation in adult rats. Mol. Pain 1, 23 https://doi.org/10.1186/1744-8069-1-23
  70. Xia, Z. and Storm, D. R. (1997) Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr. Opin. Neurobiol. 7, 391-396 https://doi.org/10.1016/S0959-4388(97)80068-2
  71. Yamamura, H., Iwata, K., Tsuboi, Y., Toda, K., Kitajima, K., et al. (1996) Morphological and electrophysiological properties of ACCx nociceptive neurons in rats. Brain Res. 735, 83-92 https://doi.org/10.1016/0006-8993(96)00561-6
  72. Zalfa, F., Giorgi, M., Primerano, B., Moro, A., Di Penta, A., et al. (2003) The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317-327 https://doi.org/10.1016/S0092-8674(03)00079-5
  73. Zhao, M. G., Toyoda, H., Ko, S. W., Ding, H. K., Wu, L. J., et al. (2005a) Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J. Neurosci. 25, 7385-7392 https://doi.org/10.1523/JNEUROSCI.1520-05.2005
  74. Zhao, M. G., Toyoda, H., Lee, Y. S., Wu, L. J., Ko, S. W., et al. (2005b) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47, 859-872 https://doi.org/10.1016/j.neuron.2005.08.014
  75. Zhao, M. G., Ko, S. W., Wu, L. J., Toyoda, H., Xu, H., et al. (2006) Enhanced presynaptic neurotransmitter release in the anterior cingulate cortex of mice with chronic pain. J. Neurosci. 26, 8923-8930 https://doi.org/10.1523/JNEUROSCI.2103-06.2006
  76. Zhuo, M. (2002) Glutamate receptors and persistent pain: targeting forebrain NR2B subunits. Drug Discov. Today 7, 259-267 https://doi.org/10.1016/S1359-6446(01)02138-9
  77. Zhuo, M. (2005) Canadian association of neuroscience review: cellular and synaptic insights into physiological and pathological pain. EJLB-CIHR michael smith chair in neurosciences and mental health lecture. Can. J. Neurol. Sci. 32, 27-36 https://doi.org/10.1017/S031716710001684X
  78. Zhuo, M. (2006) Molecular mechanisms of pain in the anterior cingulate cortex. J. Neurosci. Res. 84, 927-933 https://doi.org/10.1002/jnr.21003