SIRT1 promotes DNA repair activity and deacetylation of Ku70

Jeong, Jae-Min;Juhn, Kyung-Mi;Lee, Han-Soo;Kim, Sang-Hoon;Min, Bon-Hong;Lee, Kyung-Mi;Cho, Myung-Haeng;Park, Gil-Hong;Lee, Kee-Ho

  • Published : 20070200

Abstract

Human SIRT1 controls various physiological re-sponses including cell fate, stress, and aging, through deacetylation of its specific substrate protein. In processing DNA damage signaling, SIRT1 attenuates a cellular apoptotic response by deace-tylation of p53 tumor suppressor. The present study shows that, upon exposure to radiation, SIRT1 could enhance DNA repair capacity and deacetylation of repair protein Ku70. Ectopically over-expressed SIRT1 resulted in the increase of repair of DNA strand breakages produced by radiation. On the other hand, repression of endogenous SIRT1 expression by SIRT1 siRNA led to the decrease of this repair activity, indicating that SIRT1 can regulate DNA repair capacity of cells with DNA strand breaks. In addition, repair protein Ku70, leading to subsequent deace-tylation. The dominant-negative SIRT1, a cataly-tically inactive form, did not induce deacetylation of Ku70 protein as well as increase of DNA repair capacity. These observations suggest that SIRT1 modulates DNA repair activity, which could be regulated by the acetylation status of repair protein Ku70 following DNA damage.

Keywords

References

  1. Anderson RM, Latorre-Esteves M, Neves AR, Lavu S, Medvedik O, Taylor C, Howitz KT, Santos H, Sinclair DA. Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 2003;302:2124-6 https://doi.org/10.1126/science.1088697
  2. Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 1995;9:2888-902
  3. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011-5 https://doi.org/10.1126/science.1094637
  4. Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor Suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005;123: 437-48
  5. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004a;13:627-38
  6. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004b;305:390-2 https://doi.org/10.1126/science.1099196
  7. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260: 273-9 https://doi.org/10.1006/bbrc.1999.0897
  8. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793-8
  9. Gasser SM, Cockell MM. The molecular biology of the SIR proteins. Gene 2001;279:1-16 https://doi.org/10.1016/S0378-1119(01)00741-7
  10. Hegde V, Klein H. Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast. Nucleic Acids Res 2000;28:2779-83 https://doi.org/10.1093/nar/28.14.2779
  11. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NADdependent histone deacetylase. Nature 2000;403:795-800 https://doi.org/10.1038/35001622
  12. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 2000;97:5807-11 https://doi.org/10.1073/pnas.110148297
  13. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001;107:137-48
  14. Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 1999;97:621-33 https://doi.org/10.1016/S0092-8674(00)80773-4
  15. Moazed D. Enzymatic activities of Sir2 and chromatin silencing. Curr Opin Cell Biol 2001;13:232-8
  16. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004;116: 551-63 https://doi.org/10.1016/S0092-8674(04)00126-6
  17. Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004;306:2105-8
  18. Ouyang H, Nussenzweig A, Kurimasa A, Soares VC, Li X, Cordon-Cardo C, Li W, Cheong N, Nussenzweig M, Iliakis G, Chen DJ, Li GC. Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J Exp Med 1997;186:921-9 https://doi.org/10.1084/jem.186.6.921
  19. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771-6 https://doi.org/10.1038/nature02583
  20. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113-8 https://doi.org/10.1038/434008a
  21. Sherman JM, Stone EM, Freeman-Cook LL, Brachmann CB, Boeke JD, Pillus L. The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell 1999;10:3045-59 https://doi.org/10.1091/mbc.10.9.3045
  22. Shore D. The Sir2 protein family: A novel deacetylase for gene silencing and more. Proc Natl Acad Sci USA 2000;97:14030-2
  23. Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD. A phylogenetically conserved $NAD^{+}$-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 2000;97:6658-63
  24. Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 1999;99:735-45 https://doi.org/10.1016/S0092-8674(00)81671-2
  25. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149-59 https://doi.org/10.1016/S0092-8674(01)00527-X
  26. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23:2369-80 https://doi.org/10.1038/sj.emboj.7600244
  27. Zeng L, Sarasin A, Mezzina M. Novel complementation assays for DNA repair-deficient cells. Transient and stable expression of DNA repair genes. Methods Mol Biol 1999; 113:87-100