Delivery of Photosensitizers for Photodynamic Therapy

광역동치료에서 약물전달기술을 이용한 광활성제 전달

Park, Seung-Woo
박승우

  • Published : 20070500

Abstract

Photodynamic therapy (PDT) has been used to treat several types of cancer, and comprises intravascular administration of photosensitizer, uptake by cancer cells, and followed by irradiation of light of appropriate wavelength. Although PDT takes advantage of relative retention of photosensitizer by cancer cells, effective delivery of photosensitizing drugs is of great concern. Several delivery strategies have been employed in PDT. Photosensitizers can be delivered either by passive carriers such as liposomes, micelles, and polymeric particles, or by active targeting using cancer cell-directed ligands or antibodies. Although well-studied colloidal carriers effectively deliver photosensitizer to tumor cells, they are taken up by mononuclear phagocytic system. Delivery system using polymers is an attractive alternative to colloidal carriers, in which hydrophobic drugs are chemically or physically loaded to polymers. Though there are several steps to be solved, targeted delivery system utilizing receptors or antigens abundantly expressed on cancer cell theoretically provides a great deal of advantages over passive system. Selective uptake of photosensitizers by cancer cells may greatly enhance therapeutic efficacy as well as minimizing adverse effects resulting from accumulation in normal tissue. This review discusses various strategies for photosensitizer delivery that have been investigated to date. (Korean J Gastroenterol 2007;49: 300-313)

Keywords

References

  1. Allison RR, Mang TS, Wilson BD. Photodynamic therapy for the treatment of nonmelanomatous cutaneous malignancies. Semin Cutan Med Surg 1998;17:153-163 https://doi.org/10.1016/S1085-5629(98)80008-4
  2. Moan J, Peng Q. An outline of the hundred-year history of PDT. Anticancer Res 2003;23:3591-3600
  3. Parrish JA, Fitzpatrick TB, Tanenbaum L, et al. Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. N Engl J Med 1974;291:1207-1211 https://doi.org/10.1056/NEJM197412052912301
  4. Daniell MD, Hill JS. A history of photodynamic therapy. Aust NZ J Surg 1991;61:340-348 https://doi.org/10.1111/j.1445-2197.1991.tb00230.x
  5. Allison RR, Mota HC, Sibata CH. Clinical PD/PDT in north America: an historical review. Photodiag Photodyn Ther 2004;1:263-277 https://doi.org/10.1016/S1572-1000(04)00084-5
  6. Lipson RL, Baldes EJ. Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. J Thorac Cardiovasc Surg 1961;42:623-629
  7. Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG. Photoradiation therapy II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 1975;55:115-121 https://doi.org/10.1093/jnci/55.1.115
  8. Dougherty TJ, Lawrence G, Kaufman JH, Boyle D, Weishaupt KR, Goldfarb A. Photoradiation in the treatment of recurrent breast carcinoma. J Natl Cancer Inst 1979;62:231-237
  9. Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJH, Sibata CH. Photosensitizers in clinical PDT. Photodiag Photodyn Therapy 2004;1:27-42 https://doi.org/10.1016/S1572-1000(04)00007-9
  10. Detty MR, Gibson SL, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 2004;47;3897-3915 https://doi.org/10.1021/jm040074b
  11. Wilson BC, Olivo M, Singh G. Subcellular localization of photofrin and aminolevulinic acid and photodynamic crossresistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodyanamic therapy. Photochem Photobiol 1997;65:166-176 https://doi.org/10.1111/j.1751-1097.1997.tb01894.x
  12. Geze M, Morliere P, Maziere JC, Smith KM, Santus R. Lysosomes, a key target of hydrophobic photosensitizers proposed for photochemotherapeutic applications. J Photoch Photobio B 1993;20:23-35 https://doi.org/10.1016/1011-1344(93)80128-V
  13. MacDonald IJ, Morgan J, Bellnier DA, et al. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobiol 1999;70:789-797 https://doi.org/10.1111/j.1751-1097.1999.tb08284.x
  14. Nagata S, Obana A, Gohto Y, Nakajima S. Necrotic and apoptotic cell death of human malignant melanoma cells following photodynamic therapy using an amphiphilic photosensitizer ATX-S10(Na). Laser Surg Med 2003;33:64-70 https://doi.org/10.1002/lsm.10190
  15. Berg K, Prasmickaite L, Selbo PK, Hellum M, Bonsted A, Hogset A. Photochemical internalization (PCI)-a novel technology for release of macromolecules from endocytic vesicles. Oftalmologia 2003;56:67-71
  16. Morgan J, Oseroff AR. Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev 2001;49:71-86 https://doi.org/10.1016/S0169-409X(01)00126-0
  17. Runnels JM, Chen N, Ortel B, Kato D, Hasan T. BPDMA-mediated photosensitization in vitro and in vivo: cellular adhesion and beta1 integrin expression in ovarian cancer cells. Br J Cancer 1999;80:946-953 https://doi.org/10.1038/sj.bjc.6690448
  18. Takeuchi Y, Kurohane K, Ichikawa K, Yonezawa S, Nango M, Oku N. Induction of intensive tumor suppression by antiangiogenic photodyanamic therapy using polycation-modified liposomal photosensitizer. Cancer 2003;97:2027-2034 https://doi.org/10.1002/cncr.11283
  19. Dummin H, Cernay T, Zimmermann HW. Selective photosensitization of mitochondria in HeLa cells by cationic Zn (II) phthalocyanines with lipophilic side-chains. J Photoch Photobio B 1997;37:219-229 https://doi.org/10.1016/S1011-1344(96)07416-7
  20. Aveline BM, Redmond RW. Can cellular phototoxicity be accurately predicted on the basis of sensitizer photophysics? Photochem Photobiol 1999;69:306-316 https://doi.org/10.1562/0031-8655(1999)069<0306:CCPBAP>2.3.CO;2
  21. Teiten MH, Bezdetnaya L, Morliere P, Santus R, Guillemin F. Endoplasmic reticulum and golgi apparatus are the preferential sites of Foscan localization in cultured tumour cells. Br J Cancer 2003;88:146-152 https://doi.org/10.1038/sj.bjc.6600664
  22. Poste G, Kirsh R, Allison BA. Site-specific (targeted) drug delivery in cancer therapy. Bio/Technology 1983;1:869-878 https://doi.org/10.1038/nbt1283-869
  23. Steyger PS, Baban DF, Brereton M, Ulbrich K, Seymour LW. Intratumoral distribution as a determinant of tumour responsiveness to therapy using polymer-based macromolecular prodrug. J Control Release 1996;39:35-46 https://doi.org/10.1016/0168-3659(95)00131-X
  24. Juliano RL. Factors affecting the clearance kinetics and tissue distribution of liposomes, microspheres and emulsions. Adv Drug Deliv Rev 1988;2:31-54 https://doi.org/10.1016/0169-409X(88)90004-X
  25. Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 1995;70:95-111 https://doi.org/10.1016/0031-6865(95)00010-7
  26. Damoiseau X, Schuitmaker HJ, Lagerberg JWM, Hoebeke M. Increase of photosensitizing efficiency of the bacteriochlorin a by liposomes-incorporation. J Photoch Photobio B Biol 2001;60:50-60 https://doi.org/10.1016/S1011-1344(01)00118-X
  27. Jori G, Reddi E, Cozzani I, Tomio L. Controlled targeting of different subcellular sites by porphyrin in tumour-bearing mice. Br J Cancer 1986;53:615-621 https://doi.org/10.1038/bjc.1986.104
  28. Richter AM, Waterfield E, Jain AK, Canaan JA, Allison BA, Levy JG. Liposomal delivery of a photosensitizer benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol 1993;57:1000-1006 https://doi.org/10.1111/j.1751-1097.1993.tb02962.x
  29. Keene JP, Kessel D, Land EJ, Redmond RW, Truscott TG. Direct detection of singlet oxygen sensitized by haematoporphyrin and related compounds. Photochem Photobiol 1986;43:117-120 https://doi.org/10.1111/j.1751-1097.1986.tb09501.x
  30. Isele U, Schieweck K, Kessler R, Hoogevest PV, Capraro HG. Pharmacokinetics and body distribution of liposomal zinc phthalocyanine in tumor-bearing mice: influence of aggregation state, particle size and composition. J Pharm Sci 1995;84:166-173 https://doi.org/10.1002/jps.2600840209
  31. Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation time. Biochim Biophys Acta 1991;1070:187-192 https://doi.org/10.1016/0005-2736(91)90162-2
  32. Kulkarni SR, Korgaonkar CK. Photodynamic therapy: a novel approach to treat variety of diseases. Indian Drugs 1996;33:487-495
  33. Schroit AJ, Madsen J, Nayar R. Liposome-cell interactions; in vitro discrimination of uptake mechanism and in vivo targeting strategies to mononuclear phagocytes. Chem Phys Lipids 1986;40:373-393 https://doi.org/10.1016/0009-3084(86)90080-0
  34. Rensen PC, Love WG, Taylor PW. In vitro interaction of zinc (II)-phthalocyanine-containing liposomes and plasma lipoproteins. J Photochem Photobiol B 1994;26:29-35 https://doi.org/10.1016/1011-1344(94)85033-X
  35. Renno RZ, Miller JW. Photosensitizer delivery for photodynamic therapy of choroidal neovascularization. Adv Drug Deliv Rev 2001;52:63-78 https://doi.org/10.1016/S0169-409X(01)00195-8
  36. Konan YN, Gurny R, Allemann E. State of art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 2002;66:89-106 https://doi.org/10.1016/S1011-1344(01)00267-6
  37. Selman SH, Garbo GM, Keck RW, Kreimer-Birnbaum M, Morgan AR. A dose responsive analysis of purpurin derivatives used as photosensitizers for the photodynamic treatment of transplantable fanft induced urothelial tumors. J Urol 1987;137:1255-1257 https://doi.org/10.1016/S0022-5347(17)44476-4
  38. Morgan AR, Garbo GM, Keck RW, Selman SH. New photosensitizers for photodynamic therapy: combined effect of metallopurpurin derivatives and light on transplantable bladder tumors. Cancer Res 1988;48:194-198
  39. Worle D, Muller S, Shopova M, et al. Effect of delivery system on the pharmacokinetic and phototherapeutic properties of bis (methyloxyethyleneoxy) silicon-phthalocyanine in tumor-bearing mice. J Photochem Photobiol B 1999;50:124-128 https://doi.org/10.1016/S1011-1344(99)00082-2
  40. Kessel D, Morgan A, Garbo GM. Sites and efficacy of photodamage by tin etiopurpurin in vitro using different delivery systems. Photochem Photobiol 1991;54:193-196 https://doi.org/10.1111/j.1751-1097.1991.tb02006.x
  41. Michaud LB. Methods for preventing reactions secondary to cremophor EL. Ann Pharmacother 1997;31:1402-1404 https://doi.org/10.1177/106002809703101120
  42. Labib A, Lenaerts V, Chouinard F, Leroux JC, Ouellet R, Van Lier JE. Biodegradable nanospheres containing phthalocyanines and naphthalocyanines for targeted photodynamic tumor therapy. Pharm Res 1991;8:1027-1031 https://doi.org/10.1023/A:1015809124895
  43. Allemann E, Brasseur N, Benrezzak O, et al. PEG-coated poly (lactic acid) nanoparticels for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharm Pharmacol 1995;47:382-387 https://doi.org/10.1111/j.2042-7158.1995.tb05815.x
  44. Bachor R, Shea CR, Belmonte SJ, Hasan T. Free and conjugated chlorin e6 in the photodynamic therapy of human bladder carcinoma cells. J Urol 1991;146:1654-1658 https://doi.org/10.1016/S0022-5347(17)38206-X
  45. Bachor R, Shea CR, Gilles R, Hasan T. Photosensitized destruction of human bladder carcinoma cells treated with chlorin e6-conjugated microspheres. Proc Natl Acad Sci USA 1991;88:1580-1584 https://doi.org/10.1073/pnas.88.4.1580
  46. Tijerina M, Foweres KD, Kopeckova P, Kopecek J. Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorin e6 does not induce p-glycoprotein-mediated multidrug resistance. Biomaterials 2000;21:2203-2210 https://doi.org/10.1016/S0142-9612(00)00161-7
  47. Brasseur N, Ouellet R, La Madeleine C, Van Lier JE. Water soluble aluminum phthalocyanine-polymer conjugates for PDT: photodynamic activities and pharmacokinetics in tumour-bearing mice. Br J Cancer 1999;80:1533-1541 https://doi.org/10.1038/sj.bjc.6690557
  48. Westermann R, Glanzmann T, Andrejevie S, et al. Long circulating half-life and high tumor selectivity of the photosensitizer meta-tetrahydroxyphenylchlorin conjugated to polyethylene glycol in mice grafted with a human colon carcinoma. Int J Cancer 1998;76:842-850 https://doi.org/10.1002/(SICI)1097-0215(19980610)76:6<842::AID-IJC13>3.0.CO;2-4
  49. Bellemo C, Jori G, Rihter BD, Kenney ME, Rodgers MAJ. Si (IV)naphtahlocyanine: modulation of its pharmacokinetic properties through the use of hydrophilic axial ligands. Cancer Lett 1992;65:145-150 https://doi.org/10.1016/0304-3835(92)90159-S
  50. Yasugi K, Nagasaki Y, Kato M, Kataoka K. Preparation and characterization of polymer micelles from poly (ethylene glycol)-poly (D,L-lactide) block copolymers as potential drug carrier. J Control Release 1999;62:89-100 https://doi.org/10.1016/S0168-3659(99)00028-0
  51. Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001;74:295-302 https://doi.org/10.1016/S0168-3659(01)00341-8
  52. Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacryladmide) and poly (butylmethacrylate). J Control Release 1999;62:115-127 https://doi.org/10.1016/S0168-3659(99)00029-2
  53. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92:1343-1355 https://doi.org/10.1002/jps.10397
  54. Kwon G, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release 1994;29:17-23 https://doi.org/10.1016/0168-3659(94)90118-X
  55. Hioka N, Chowdhary RK, Chansarkar N, Delmarre D, Sternberg E, Dolphin D. Studies of benzoporphyrin derivative with Pluronics. Can J Chem 2002;80:1321-1326 https://doi.org/10.1139/v02-167
  56. Zhang JX, Hansen CB, Allen TM, Boey A, Boch R. Lipidderivatized poly (ethylene glycol) micellar formulations of benzoporphyrin derivatives. J Control Release 2003;86:323-338 https://doi.org/10.1016/S0168-3659(02)00442-X
  57. Taillefer J, MC Jones, Brasseur N, van Lier JE, Leroux JC. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J Pharm Sci 2000;89:52-62 https://doi.org/10.1002/(SICI)1520-6017(200001)89:1<52::AID-JPS6>3.0.CO;2-D
  58. Le Garrec D, Taillefer J, van Lier JE, Lenaerts V, Leroux JC. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target 2002;10:429-437 https://doi.org/10.1080/1061186021000001887
  59. Taillefer J, Brasseur N, van Lier JE, Lenaerts V, Le Garrec D, Leroux JC. In-vitro and in-vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J Pharm Pharmacol 2001;53:155-166 https://doi.org/10.1211/0022357011775352
  60. Sharman WM, Allen CM, van Lier JE. Role of activate oxygen species in photodynamic therapy. Methods Enzymol 2000;319:376-400 https://doi.org/10.1016/S0076-6879(00)19037-8
  61. Jori G, Beltramini M, Reddi E, et al. Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo. Cancer Lett 1984;24:291-297 https://doi.org/10.1016/0304-3835(84)90025-9
  62. Hynds SA, Welsh J, Stewart JM, et al. Low-density lipoprotein metabolism mice with soft tissue tumours. Biochim Biophys Acta 1984;794:589-595
  63. Hamblin MR, Newman EL. Photosensitizer targeting in photodynamic thearpy I. Conjugates of haematoporphyrin with albumin and transferrin. J Photochem Photobiol B 1994;26:45-46 https://doi.org/10.1016/1011-1344(94)85035-6
  64. Sharman WM, van Lier JE, Allen CM. Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Delivery Rev 2004;56:53-76 https://doi.org/10.1016/j.addr.2003.08.015
  65. Lutsenko SV, Feldman NB, Finakova GV, et al. Targeting phthalocyanines to tumor cells using epidermal growth factor conjugates, Tumour Biol 1999;20:218-224 https://doi.org/10.1159/000030066
  66. Gijsens A, Witte P. Phototoxic action of EGF-PVA-Sn (IV) chlorin e6 and EGF-dextran-Sn (IV)chlorin e6 internalizable conjugates on A431 cells. Int J Cancer 1998;13:1171-1177
  67. Akhlynina TV, Rosenkranz AA, Jans DA, Sobolev AS. Insulin- mediated intracellular targeting enhances the photodynamic activity of chlorin e6. Cancer Res 1995;55:1014-1019
  68. van Berkel TJC. Drug targeting: application of endogenous carriers for site-specific delivery of drugs. J Control Release 1993;24:145-155 https://doi.org/10.1016/0168-3659(93)90174-4
  69. Candide C, Morliere P, Goldstein S, et al. In vitro interaction of the photoactive anticancer porphyrin derivate photofrin II with low density lipoprotein, and its delivery to cultured human fibroblasts. FEBS Lett 1986;207:133-138 https://doi.org/10.1016/0014-5793(86)80026-6
  70. Barel A, Jori G, Perin A, Romandini P, Pagnan A, Biffanti S. Role of high, low-and very low-density lipoproteins in the transport and tumor-delivery of hematoporphyrin in vivo. Cancer Lett 1986;32:145-150 https://doi.org/10.1016/0304-3835(86)90112-6
  71. Allison BA, Waterfield E, Richter AM, Levy JG. The effects of plasma lipoproteins on in vitro tumor cell killing and in vivo tumor photosensitization with benzoporphyrin derivative. Photochem Photobiol 1991;54:709-715 https://doi.org/10.1111/j.1751-1097.1991.tb02079.x
  72. Schmidt-Erfurth U, Hasan T, Gragoudas ES, Michaud N, Flotte TJ, Birngruber R. Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology 1994;101:1953-1961 https://doi.org/10.1016/S0161-6420(13)31079-3
  73. Reddi E, Zhou C, Biolo R, Menegaldo E, Jori G. Liposome or LDL-administered Zn (II)-phthalocyanine as a photodynamic agent for tumors. I. Pharmacokinetic properties and phototherapeutic efficiency. Br J Cancer 1990;61:407-411 https://doi.org/10.1038/bjc.1990.89
  74. Schmidt-Erfurth U, Diddens H, Birngruber R, Hasan T. Photodynamic targeting of human retinoblastoma cells using covalent low-density lipoprotein conjugates. Br J Cancer 1997;75:54-61 https://doi.org/10.1038/bjc.1997.9
  75. Mew D, Wat CK, Towers GHN, Levy JG. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol 1983;130:1473-1477
  76. Klyashchitsky BA, Nechaeva IS, Ponomaryov GV. Approaches to targeted photodynamic tumor therapy. J Control Releas 1994;29:1-16 https://doi.org/10.1016/0168-3659(94)90117-1
  77. Segalla A, Milanesi C, Capraro HG, Isele U, Schieweck K. CGP 55398, a liposomal Ge (IV) phthalocyanine bearing two axially ligated cholesterol moieties: a new potential agent for photodynamic therapy of tumours. Br J Cancer 1994;69:817-825 https://doi.org/10.1038/bjc.1994.160
  78. Illum L, Jones PDE. Attachment of monoclonal antibodies to microspheres. Methods Enzymol 1985;112:67-84 https://doi.org/10.1016/S0076-6879(85)12008-2
  79. Jiang FN, Jiang S, Liu D, Ritcher A, Levy JG. Development of technology for linking photosensitizers to a model monoclonal antibody. J Immunol Methods 1990;134:139-149 https://doi.org/10.1016/0022-1759(90)90122-C
  80. Oseroff AR, Ara G, Ohuoha D, et al. Strategies for selective cancer photochemotherapy: antibody-targeted and selective carcinoma cell photolysis. Photochem Photobiol 1987;46:83-96 https://doi.org/10.1111/j.1751-1097.1987.tb04740.x
  81. Jiang FN, Allison B, Liu D, Levy JG. Enhanced photodynamic killing of target cells by either monoclonal antibody or low density lipoprotein mediated delivery systems. J Control Release 1992;19:41-58 https://doi.org/10.1016/0168-3659(92)90064-X
  82. Duska LR, Hamblin MR, Bamberg MP, Hasan T. Biodistribution of charged F (ab') 2 photoimmuno-conjugates in a xenograft model of ovarian cancer. Br J Cancer 1997;75:837-844 https://doi.org/10.1038/bjc.1997.149
  83. Del Gorvernatore M, Hamblin MR, Piccinini EE, Ugolini G, Hasan T. Targeted photodestruction of human colon cancer cells using charged 17.1A chlorin e6 immunoconjugates. Br J Cancer 2000;82:56-64 https://doi.org/10.1054/bjoc.1999.0877
  84. Hamblin MR, Del Gorvernatore M, Rizvi I, Hasan T. Biodistribution of charged 17.4A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer. Br J Cancer 2000;83:1544-1551 https://doi.org/10.1054/bjoc.2000.1486
  85. Liu D, Huang L. Immunoliposome targeting to pulmonary endothelium. In: Gregoriadis G, Florence AT, Patel HM, eds. Liposomes in drug delivery. 1st ed. Switzerland: Harwood Academic Publishers, 1993:111-121
  86. Morgan J, Gray AG, Huehns ER. Specific targeting and toxicity of sulphonated aluminum phthalocyanine photosensitized liposomes directed to cells by monoclonal antibody in vitro. Br J Cancer 1989;59:366-370 https://doi.org/10.1038/bjc.1989.73
  87. Maruyama K, Ishida O, Takizama T, Moribe K. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev 1999;40:89-102 https://doi.org/10.1016/S0169-409X(99)00042-3
  88. Bos E, Boon P, Kaspersen F, McCabe R. Passive immunotherapy of cancer: perspectives and problems. J Control Release 1991;16:101-112 https://doi.org/10.1016/0168-3659(91)90034-B
  89. Allison BA, Pritchard PH, Levy JG. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br J Cancer 1994;69:833-839 https://doi.org/10.1038/bjc.1994.162
  90. Allison BA, Crespo MT, Jain AK, Richter AM, Hsiang YS, Levy JG. Delivery of benzoporphyrin derivate, a photosensitizer, into atherosclerotic plaque of watanabe heritable hyperlipidemic rabbits and balloon-injured New Zealand rabbits. Photochem Photobiol 1997;65:877-883 https://doi.org/10.1111/j.1751-1097.1997.tb01938.x
  91. Mew D, Lum V, Wat CK, et al. Ability of specific monoclonal antibodies and conventional antisera conjugated to hematoporphyrin to label and kill selective cell lines subsequent to light activation. Cancer Res 1985;45:4380-4386
  92. Oseroff AR, Ohuoda D, Hasan T, Bommer JC. Antibodytargeted photolysis: selective photodestruction of human T-cell leukemia cells using monoclonal antibody-chlorin e6 conjugate. Proc Natl Acad Sci USA 1986;83:8744-8748 https://doi.org/10.1073/pnas.83.22.8744
  93. Vrouenraets MB, Visser GWM, Loup C, et al. Targeting of a hydrophilic photosensitizer by use on internalizing monoclonal antibodies: a new possibility for use in photodynamic therapy. Int J Cancer 2000;88:108-114 https://doi.org/10.1002/1097-0215(20001001)88:1<108::AID-IJC17>3.0.CO;2-H
  94. Hasan T, Lin A, Yarmush D, Oseroff A, Yarmush M. Monoclonal antibody-chromophore conjugate as selective phototoxins. J Control Release 1989;10:107-117 https://doi.org/10.1016/0168-3659(89)90022-9