Strucrural Properties of GaSb Layers Grown on InAs, AlSb, and GaSb Buffer Layers on GaAs (001) Substrates

Noh, Y.K.;Hwang, Y.J.;Kim, M.D.;Kwon, Y.J.;Oh, J.E.;Kim, Y.H.;Lee, J.Y.

  • Published : 20070600

Abstract

The strain-relief and the structural properties of GaSb films with thin InAs, AlSb, and GaSb buffer layers grown on GaAs (001) substrates at low temperature (LT) by molecular beam epitaxy were investigated using atomic force microscopy, transmission election microscopy, and X-ray diffraction. The strain arising from depositing the thin buffer layer onto the GaAs substrate was relieved by a periodic array of 90$^\circ$ misfit dislocations with a Burgers vector of 1/2a$<$110$>$ for the AlSb/GaAs and the GaSb/GaAs systems, but by both 60$^\circ$ and 90$^\circ$ misfit dislocations for the InAs/GaAs system. The 90$^\circ$ misfit dislocation arrays at the AlSb/GaAs and GaSb/GaAs interface had average spacing of 4.80 nm and 5.59 nm, respectively. The mean roughnesses and the full widths at half maximum of the rocking curves of the GaSb films on the thin AlSb and GaSb buffer layers were found, respectively, to be less than 1 nm and about three times lower than the corresponding values for the system with an InAs buffer layer. These results clearly demonstrate that the presence of a thin, low-temperature AlSb or GaSb buffer layer is very useful for improving the quality of GaSb crystals grown on GaAs substrates.

Keywords

References

  1. T. Whitaker, Compound Semiconductor, January 25 (2004)
  2. L. Shterengas, G. L. Belenky, A. Gourevitch, D. Donetsky, J. G. Kim, R. U. Martinelli and D.Westerfeld, IEEE Photonics Technol. Lett. 16, 2218 (2004) https://doi.org/10.1109/LPT.2004.833920
  3. C. Mourad, D. Gianardi and R. Kaspi, J. Appl. Phys. 88, 5543 (2000)
  4. M. B. Z. Morosini, J. L. Gerrera-Perez, M. S. S. Loural, A. A. G. Vonzuben, A. C. F. da Silveira and N. B. Patel, IEEE J. Quantum Electron. QE-29, 2103 (1993)
  5. J.-J. Kim, H.-M. Kim and S.-H. Park, J. Korean Phys. Soc. 47, 732 (2005)
  6. S.-H. Park, J. Korean Phys. Soc. 48, 472 (2006)
  7. P. T. Staveteig, Y. H. Choi, G. Labeyrie, E. Bigan and M. Razeghi, Appl. Phys. Lett. 64, 460 (1994) https://doi.org/10.1063/1.110929
  8. R. J. Malik, J. P. van der Ziel, B. F. Levine, C. G. Bethea and J. Walker, J. Appl. Phys. 59, 3909 (1986) https://doi.org/10.1063/1.336582
  9. J. W. Matthews and A. E. Blakeslee, J. Crystal Growth 27, 118 (1974)
  10. K. Akahane, N. Yamamoto, S.-I. Gozu and N. Ohtani, J. Crystal Growth 264, 21 (2004) https://doi.org/10.1016/j.jcrysgro.2003.12.041
  11. G. Balakrishnan, S. Huang, L. R. Dawson, Y.-C. Xin, P. Conlin, D. L. Huffaker, Appl. Phys. Lett. 86, 034105 (2005) https://doi.org/10.1063/1.1850611
  12. L. M¨uller-Kirsch, R. Heitz, A. Schliwa, O. Stier, D. Bimberg, H. Kirmse and W. Neumann, Appl. Phys. Lett. 78, 1418 (2001)
  13. L. M¨uller-Kirsch, R. Heitz, U. W. Pohl and D. Bimberg, Appl. Phys. Lett. 79, 1027 (2001)
  14. S. H. Hung, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson and D. L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006) https://doi.org/10.1063/1.2172742
  15. M. O. Manasreh, Antimonide-Related Strained-Layer Heterostructures (Gordon and Breach Science Publishers, Amsterdam, 1997), p. 107