Comparison of Breakthrough Characteristics for Binary Vapors Composed of Acetone and Toluene Based on Adsorption Intensity in Activated Carbon Fixed-bed Reactor

Lee, Song-Woo;Kam, Sang-Kyu;Lee, Min-Gyu

  • Published : 20071100

Abstract

This study was carried out to investigate the adsorption intensity between adsorbates and activated carbon in the binary vapor system of acetone-toluene mixed vapor. Breakthrough curves were compared according to adsorption intensity by breakthrough experiments. The breakthrough curve of toluene vapor in the binary vapor system was similar type to that of single vapor, but the breakthrough curve of acetone vapor was quite different from that of single vapor because of difference of adsorption intensity between adsorbates and surface of activated carbon. In these binary vapor systems, the roll-up phenomenon was observed. When acetone concentration was increased to twice in the binary vapor system, the breakthrough curve of toluene was similar to before but the height of roll-up of acetone was increased to 1.5 times than before. When toluene concentration was increased to twice, the breakthrough curve of toluene was different from before and the height of roll-up of acetone was acetone increased to 1.65 times than before. As increasing linear velocity, the slopes of breakthrough curves were increased and the height of roll-up of acetone increased to 2.3 times than inlet concentration.

Keywords

References

  1. Z. H. Huang, F. Kang, K. M. Liang, and J. Hao, J. Hazard. Mater., 98, 107 (2003)
  2. H. L. Tidahy, S. Siffert, F. Wyrwalski, J. F. Lamonier, and A. Aboukais, Catal. Today, 119, 317 (2007) https://doi.org/10.1016/j.cattod.2006.08.021
  3. H. Einaga and S. Futamura, J. Catal., 243, 446 (2006)
  4. J. J. Choi, J. Ind. Eng. Chem., 3, 56 (1997)
  5. S. K. Kam, K. H. Kang, and M. G. Lee, J. Microb. Biotech,, 15, 977 (2005)
  6. C. C. Lin, T. Y. Wei, S. K. Hsu, and W. T. Liu, Sepa. Purif. Technol., 52, 274 (2006)
  7. F. Heymes, P. Manno-Demoustier, F. e Charbit, J. L. Fanlo, and P. Moulin, Chem. Eng. J., 15, 225 (2006)
  8. Y. Miyake, A. i Sakoda, H. Yamanashi, H. Kaneda, and M. Suzuki, Wat. Resear., 37, 1852 (2003)
  9. J. H. Yun, D. K. Choi, and H. Moon, Chem. Eng. Sci., 55, 5857 (2000)
  10. S. C. Kim and I. K. Hong, J. Ind. Eng. Chem., 4, 177 (1998)
  11. M. A. Lillo-Ródenas, N. Bouazza, A. Berenguer- Murcia, J. J. Linares-Salinas, P. Soto, and A. Linares-Solano, Appl. Catal. B: Environ., 71, 298 (2007)
  12. S. Preis, J. L. Falconer, R. del P. Asensio, N. C. Santiago, A. Kachina, and J. Kallas, Appl. Catal. B: Environ., 64, 79 (2006)
  13. H. Liu, Z. Lian, X. Ye, and W. Shangguan, Chemosphere, 60, 630 (2005)
  14. I. Hong, J. Ind. Eng. Chem., 12, 918 (2006)
  15. Y. H. Song, S. J. Kim, K. I. Choi, and T. Yamamoto, J. Electrosta., 55, 189 (2002)
  16. W. T. Liao, W. J. Lee, C. Y. Chen, L. T. Hsieh, and C. C. Lai, J. Chem. Technol. Biotechnol,. 75, 817 (2000)
  17. J. Arno and J. W. Bevan, Environ. Sci. Technol., 30, 2427 (1996)
  18. N. Grisdanurak, S. Chiarakorn, and J. Wittayakun, Kor. J. Chem. Eng., 20, 950 (2003)
  19. F. Haghsereshta, S. Nourib, and G. Q. Max Lua, Carbon, 41, 881 (2003) https://doi.org/10.1016/S0008-6223(02)00262-2
  20. T. Y. Kim, S. J. Jeng, S. J. Kim, J. H. Kim, and S. Y. Cho, J. Ind. Eng. Chem., 10, 531 ( 2004)
  21. J. W. Park, Y. W. Lee, D. K. Choi, and S. S. Lee, J. Ind. Eng. Chem., 9, 381 (2003) https://doi.org/10.1021/ie50085a002
  22. J. W. Shin, K. S. Yoo, S. Y. Park, and K. S. Song, J. Ind. Eng. Chem., 12, 418 (2006)
  23. M. G. Lee, S. W. Lee, and S. H. Lee, Korean J. Chem. Eng., 23, 773 (2006) https://doi.org/10.1007/BF02705926
  24. H. P. Boem, In Advanced in Catalysis, Academic Press, New York, 16, 179-274 (1966)
  25. M. G. Lee, J. H. Lim, and S. K. Kam, Kor. J. Chem. Eng., 19, 277 (2002)
  26. H. S. Kim and Y. S. Park, J. Kor. Soc. Environ. Engrs, 25, 977 (2003)
  27. K. C. Cho, B. H. Shon, Y. M. Jo, and K. J. Oh, J. Kor. Soc. Environ. Engrs, 21, 2017 (1999)