DNA vaccines for cervical cancer: from bench to bedside

Hung, Chien-Fu;Monie, Archana;Alvarez, Ronald D.;Wu, T.C.

  • Published : 20071200

Abstract

ciated with human papillomaviruses (HPVs), partic-ularly HPV type 16. The clear association between HPV infection and cervical cancer indicates that HPV serves as an ideal target for development of preventive and therapeutic vaccines. Although the recently licensed preventive HPV vaccine, Gardasil, has been shown to be safe and capable of generating significant pro-tection against specific HPV types, it does not have therapeutic effect against established HPV infections teins, E6 and E7, are consistently co-expressed in HPV-expressing cervical cancers and are important in the induction and maintenance of cellular transforma-tion. Therefore, imunotherapy targeting E6 and/or E7 proteins may provide an opportunity to prevent and treat HPV-associated cervical malignancies. It has been established that T cel-mediated imunity is one of the most crucial components to defend against HPV infections and HPV-associated lesions. Therefore, ef-fective therapeutic HPV vaccines should generate ponses. DNA vaccines have emerged as an atractive approach for antigen-specific T cell-mediated im-munotherapy to combat cancers. Intradermal admin-istration of DNA vacines via a gene gun represents an efficient way to deliver DNA vaccines into professional antigen-presenting cells in vivo. Professional anti-gen-presenting cells, such as dendritic cells, are the most efective cells for priming antigen-specific T cells. Using the gene gun delivery system, we tested ing strategies for enhancing MHC class I and class II presentation of encoded model antigen HPV-16 E7. Furthermore, we have developed a strategy to prolong the life of DCs to enhance DNA vaccine potency. More recently, we have developed a strategy to generate an-tigen-specific CD4+T cell imune responses to further enhance DNA vaccine potency. The impressive pre- clinical data generated from our studies have led to several HPV DNA vaccine clinical trials.

Keywords

References

  1. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annual review of immunology 2000;18:767-811 https://doi.org/10.1146/annurev.immunol.18.1.767
  2. Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 2007;56:739-45 https://doi.org/10.1007/s00262-006-0272-1
  3. Boursnell ME, Rutherford E, Hickling JK, Rollinson EA, Munro AJ, Rolley N, McLean CS, Borysiewicz LK, Vousden K, Inglis SC. Construction and characterisation of a recombinant vaccinia virus expressing human papillomavirus proteins for immunotherapy of cervical cancer. Vaccine 1996;14:1485-94 https://doi.org/10.1016/S0264-410X(96)00117-X
  4. Castellino F, Germain RN. Cooperation between $CD4^+$ and $CD8^+$ T cells: when, where, and how. Annual review of immunology 2006;24:519-40 https://doi.org/10.1146/annurev.immunol.23.021704.115825
  5. Chen C-H, Wang T-L, Hung C-F, Yang Y, Young RA, Pardoll DM, Wu T-C. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Research 2000a;60:1035-42
  6. Chen CH, Wang TL, Hung CF, Pardoll DM, Wu TC. Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine 2000b;18:2015-22 https://doi.org/10.1016/S0264-410X(99)00528-9
  7. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001;108:669-78 https://doi.org/10.1172/JCI200112346
  8. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996;2:1122-8 https://doi.org/10.1038/nm1096-1122
  9. Cresswell P. Assembly, transport, and function of MHC class II molecules. Annual review of immunology 1994;12:259-93 https://doi.org/10.1146/annurev.iy.12.040194.001355
  10. Crook T, Morgenstern JP, Crawford L, Banks L. Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells co-transformed by HPV-16 plus EJ-ras. Embo J 1989;8:513-9
  11. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10:942-9 https://doi.org/10.1038/nm1093
  12. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology 2004;324:17-27 https://doi.org/10.1016/j.virol.2004.03.033
  13. Dilber MS, Phelan A, Aints A, Mohamed AJ, Elliott G, Smith CI, O'Hare P. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Ther 1999;6:12-21 https://doi.org/10.1038/sj.gt.3300838
  14. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annual review of immunology 1997;15:617-48 https://doi.org/10.1146/annurev.immunol.15.1.617
  15. Dorange F, El Mehdaoui S, Pichon C, Coursaget P, Vautherot JF. Marek's disease virus (MDV) homologues of herpes simplex virus type 1 UL49 (VP22) and UL48 (VP16) genes: high-level expression and characterization of MDV-1 VP22 and VP16. J Gen Virol 2000;81 Pt 9:2219-30 https://doi.org/10.1099/0022-1317-81-9-2219
  16. Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997;88:223-33 https://doi.org/10.1016/S0092-8674(00)81843-7
  17. Goldberg MV, Maris CH, Hipkiss EL, Flies AS, Zhen L, Tuder RM, Grosso JF, Harris TJ, Getnet D, Whartenby KA, Brockstedt DG, Dubensky TW Jr, Chen L, Pardoll DM, Drake CG. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 2007;110:186-92 https://doi.org/10.1182/blood-2006-12-062422
  18. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7:1118-22 https://doi.org/10.1038/nm1001-1118
  19. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002;419:734-8 https://doi.org/10.1038/nature01112
  20. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annual Review of Immunology 2002;20:621-67 https://doi.org/10.1146/annurev.immunol.20.100301.064828
  21. Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annual Review of Immunology 2000;18:927-74 https://doi.org/10.1146/annurev.immunol.18.1.927
  22. Harms JS, Ren X, Oliveira SC, Splitter GA. Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 VP22 tegument protein subcellular associations. J Virol 2000;74:3301-12 https://doi.org/10.1128/JVI.74.7.3301-3312.2000
  23. Hauser H, Chen SY. Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting. Methods 2003;31:225-31 https://doi.org/10.1016/S1046-2023(03)00136-1
  24. Hauser H, Shen L, Gu QL, Krueger S, Chen SY. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 2004;11:924-32 https://doi.org/10.1038/sj.gt.3302160
  25. Huang CH, Peng S, He L, Tsai YC, Boyd DA, Hansen TH, Wu TC, Hung CF. Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope. Gene Ther 2005;12:1180-6 https://doi.org/10.1038/sj.gt.3302519
  26. Hung C-F, Cheng W-F, Chai C-Y, Hsu K-F, He L, Ling M, Wu T-C. Improving vaccine potency through intercellular spreading and enhanced MHC class I presentation of antigen. J Immunol 2001a;166:5733-40 https://doi.org/10.4049/jimmunol.166.9.5733
  27. Hung C-F, Cheng W-F, Hsu K-F, Chai C-Y, He L, Ling M, Wu T-C. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Research 2001b;61:3698-703
  28. Hung C-F, Hsu K-F, Cheng W-F, Chai CY, He L, Ling M, Wu T-C. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Flt3-ligand. Cancer Research 2001c;61:1080-8
  29. Hung CF, He L, Juang J, Lin TJ, Ling M, Wu TC. Improving DNA vaccine potency by linking Marek's disease virus type 1 VP22 to an antigen. J Virol 2002;76:2676-82 https://doi.org/10.1128/JVI.76.6.2676-2682.2002
  30. Hung CF, Cheng WF, He L, Ling M, Juang J, Lin CT, Wu TC. Enhancing major histocompatibility complex class I antigen presentation by targeting antigen to centrosomes. Cancer Res 2003;63:2393-8
  31. Hung CF, Wu TC. Improving DNA vaccine potency via modification of professional antigen presenting cells. Curr Opin Mol Ther 2003;5:20-4
  32. Hung C-F, Calizo R, Tsai YC, He L, Wu T-C. A DNA vaccine encoding a single-chain trimer of HLA-A2 linked to human mesothelin peptide generates anti-tumor effects against human mesothelin-expressing tumors. Vaccine 2007a;25: 127-35 https://doi.org/10.1016/j.vaccine.2006.06.087
  33. Hung CF, Tsai YC, He L, Wu TC. DNA vaccines encoding Ii-PADRE generates potent PADRE-specific CD4(+) T-cell immune responses and enhances vaccine potency. Mol Ther 2007b;15:1211-9 https://doi.org/10.1038/sj.mt.6300121
  34. Ji H, Wang T-L, Chen C-H, Hung C-F, Pai S, Lin K-Y, Kurman RJ, Pardoll DM, Wu T-C. Targeting HPV-16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine HPV-16 E7- expressing tumors. Hum Gene Ther 1999;10:2727-40 https://doi.org/10.1089/10430349950016474
  35. Kang TH, Lee JH, Song CK, Han HD, Shin BC, Pai SI, Hung CF, Trimble C, Lim JS, Kim TW, Wu TC. Epigallocatechin-3-gallate enhances CD8+ T cell-mediated antitumor immunity induced by DNA vaccination. Cancer Res 2007;67:802-11 https://doi.org/10.1158/0008-5472.CAN-06-2638
  36. Kim D, Hoory T, Wu T-C, Hung CF. Enhancing DNA Vaccine Potency by Combining a Strategy to Prolong Dendritic Cell Life and Intracellular Targeting Strategies with a Strategy to Boost CD4+ T cells. Human Gene Therapy 2007;18:1129-40 https://doi.org/10.1089/hum.2007.090
  37. Kim JW, Hung CF, Juang J, He L, Kim TW, Armstrong DK, Pai SI, Chen PJ, Lin CT, Boyd DA, Wu TC. Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Ther 2004a;11:1011-8 https://doi.org/10.1038/sj.gt.3302252
  38. Kim TW, Hung CF, Ling M, Juang J, He L, Hardwick JM, Kumar S, Wu T-C. Enhancing DNA vaccine potency by co-administration of DNA encoding anti-apoptotic proteins. J Clin Invest 2003;112:109-17 https://doi.org/10.1172/JCI200317293
  39. Kim TW, Hung CF, Kim JW, Juang J, Chen PJ, He L, Boyd DA, Wu TC. Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity. Hum Gene Ther 2004b;15:167-77 https://doi.org/10.1089/104303404772679977
  40. Kim TW, Lee JH, He L, Boyd DA, Hardwick JM, Hung CF, Wu TC. Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res 2005;65:309-16
  41. Koptidesova D, Kopacek J, Zelnik V, Ross NL, Pastorekova S, Pastorek J. Identification and characterization of a cDNA clone derived from the Marek's disease tumour cell line RPL1 encoding a homologue of alpha-transinducing factor (VP16) of HSV-1. Arch Virol 1995;140:355-62 https://doi.org/10.1007/BF01309869
  42. Lin CT, Tsai YC, He L, Calizo R, Chou HH, Chang TC, Soong YK, Hung CF, Lai CH. A DNA vaccine encoding a codon- optimized human papillomavirus type 16 E6 gene enhances CTL response and anti-tumor activity. J Biomed Sci 2006;13:481-8 https://doi.org/10.1007/s11373-006-9086-6
  43. Lundberg M, Johansson M. Is VP22 nuclear homing an artifact? Nat Biotechnol 2001;19:713-4 https://doi.org/10.1038/90741
  44. Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med 2004;10:15-8 https://doi.org/10.1016/j.molmed.2003.11.003
  45. Mwangi W, Brown WC, Splitter GA, Zhuang Y, Kegerreis K, Palmer GH. Enhancement of antigen acquisition by dendritic cells and MHC class II-restricted epitope presentation to CD4+ T cells using VP22 DNA vaccine vectors that promote intercellular spreading following initial transfection. J Leukoc Biol 2005;78:401-11 https://doi.org/10.1189/jlb.1204722
  46. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007;13:828-35 https://doi.org/10.1038/nm1609
  47. Oliveira SC, Harms JS, Afonso RR, Splitter GA. A genetic immunization adjuvant system based on BVP22-antigen fusion. Hum Gene Ther 2001;12:1353-9 https://doi.org/10.1089/104303401750271002
  48. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108 https://doi.org/10.3322/canjclin.55.2.74
  49. Payne LG, Fuller DH, Haynes JR. Particle-mediated DNA vaccination of mice, monkeys and men: looking beyond the dogma. Curr Opin Mol Ther 2002;4:459-66
  50. Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 2006;18:206-13 https://doi.org/10.1016/j.coi.2006.01.011
  51. Peng S, Trimble C, Ji H, He L, Tsai YC, Macaes B, Hung CF, Wu TC. Characterization of HPV-16 E6 DNA vaccines employing intracellular targeting and intercellular spreading strategies. J Biomed Sci 2005;12:689-700 https://doi.org/10.1007/s11373-005-9012-3
  52. Perkins SD, Hartley MG, Lukaszewski RA, Phillpotts RJ, Stevenson FK, Bennett AM. VP22 enhances antibody responses from DNA vaccines but not by intercellular spread. Vaccine 2005;23:1931-40 https://doi.org/10.1016/j.vaccine.2004.10.033
  53. Phelan A, Elliott G, O'Hare P. Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 1998;16:440-3 https://doi.org/10.1038/nbt0598-440
  54. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998;188:1075-82 https://doi.org/10.1084/jem.188.6.1075
  55. Roden R, Wu TC. How will HPV vaccines affect cervical cancer? Nat Rev Cancer 2006;6:753-63 https://doi.org/10.1038/nrc1973
  56. Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, Mordoh J, Fainboim L, Podhajcer OL, Rabinovich GA. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell- mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell 2004;5:241-51 https://doi.org/10.1016/S1535-6108(04)00024-8
  57. Saha S, Yoshida S, Ohba K, Matsui K, Matsuda T, Takeshita F, Umeda K, Tamura Y, Okuda K, Klinman D, Xin KQ, Okuda K. A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus. Virology 2006; 354:48-57 https://doi.org/10.1016/j.virol.2006.04.015
  58. Sciortino MT, Taddeo B, Poon AP, Mastino A, Roizman B. Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection. Proc Natl Acad Sci USA 2002;99:8318-23 https://doi.org/10.1073/pnas.122231699
  59. Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med 2007;204:1441-51 https://doi.org/10.1084/jem.20070021
  60. Steinman RM. The dendritic cell system and its role in immunogenicity. Annual review of immunology 1991;9:271-96 https://doi.org/10.1146/annurev.iy.09.040191.001415
  61. Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L, Gillison M, Pardoll D, Wu L, Wu TC. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 2003;21:4036-42 https://doi.org/10.1016/S0264-410X(03)00275-5
  62. Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annual review of immunology 2005;23:975-1028 https://doi.org/10.1146/annurev.immunol.22.012703.104538
  63. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999;189:12-9 https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
  64. Wu T-C, Guarnieri FG, Staveley-O'Carroll KF, Viscidi RP, Levitsky HI, Hedrick L, Cho KR, August T, Pardoll DM. Engineering an intracellular pathway for MHC class II presentation of HPV-16 E7. Proc Natl Acad Sci 1995;92: 11671-5
  65. Wybranietz WA, Gross CD, Phelan A, O'Hare P, Spiegel M, Graepler F, Bitzer M, Stahler P, Gregor M, Lauer UM. Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene. Gene Ther 2001;8:1654-64 https://doi.org/10.1038/sj.gt.3301564
  66. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007;7:41-51 https://doi.org/10.1038/nri1995
  67. Yue FY, Dummer R, Geertsen R, Hofbauer G, Laine E, Manolio S, Burg G. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 1997;71:630-7 https://doi.org/10.1002/(SICI)1097-0215(19970516)71:4<630::AID-IJC20>3.0.CO;2-E
  68. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002;2:342-50 https://doi.org/10.1038/nrc798