Crystal Structure of TTC0263, a Thermophilic TPR Protein from Thermus thermophilus HB27

  • Lim, Hyosun (College of Medicine, Seoul National University) ;
  • Kim, Kyunggon (College of Medicine, Seoul National University) ;
  • Han, Dohyun (College of Medicine, Seoul National University) ;
  • Oh, Jongkil (College of Medicine, Seoul National University) ;
  • Kim, Youngsoo (College of Medicine, Seoul National University)
  • Received : 2006.10.20
  • Accepted : 2007.04.30
  • Published : 2007.08.31

Abstract

The hypothetical protein TTC0263 of Thermus thermophilus HB27 is a thermophilic tetratricopeptide repeat (TPR)-containing protein. In the present study, the TPR region (residues 26-230) was resolved at $2.5{\AA}$ with R-factors of $R/R_{free}$ = 23.6%/28.6% $R/R_{free}=23.6%/28.6%$. TTC0263 consists of 11 helices that form five TPR units. Uniquely, it contains one atypical "extended" TPR (eTPR) unit. This comprises extended helical residues near the loop region of TTC0263, such that the helical length of eTPR is longer than that of the canonical TPR sequence. In addition, the hybrid TPR domain of TTC0263 possesses oligomer-forming characteristics. TPR domains are generally involved in forming multi-subunit complexes by interacting with each other or with other subunit proteins. The dynamic structure of TTC0263 described here goes some way to explaining how TPR domains mediate the formation of multi-subunit complexes.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Ministry of Health & Welfare

References

  1. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783-795 https://doi.org/10.1016/j.jmb.2004.05.028
  2. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921 https://doi.org/10.1107/S0907444998003254
  3. D'Andrea, L. D. and Regan, L. (2003) TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655-662 https://doi.org/10.1016/j.tibs.2003.10.007
  4. Das, A. K., Cohen, P. W., and Barford, D. (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J. 17, 1192-1199 https://doi.org/10.1093/emboj/17.5.1192
  5. DeLano, W. L. (2002) The PyMOL Molecular Graphics System. DeLano Scientific LLC, San Carlos, CA, (http://www.pymol. org)
  6. Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132 https://doi.org/10.1107/S0907444904019158
  7. Gatto, G. J. J., Geisbrecht, B. V., Gould, S. J., and Berg, J. M. (2000) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat. Struct. Biol. 7, 1091-1095 https://doi.org/10.1038/81930
  8. Georis, J., de Lemos Esteves, F., Lamotte-Brasseur, J., Bougnet, V., Devreese, B., et al. (2000) An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study. Protein Sci. 9, 466-475 https://doi.org/10.1110/ps.9.3.466
  9. Harp, J. M., Timm, D. E., and Bunick, G. J. (1998) Macromolecular crystal annealing: overcoming increased mosaicity associated with cryocrystallography. Acta Crystallogr. D Biol. Crystallogr. 54, 622-628 https://doi.org/10.1107/S0907444997019008
  10. Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., et al. (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat. Biotechnol. 22, 547-553 https://doi.org/10.1038/nbt956
  11. Ikai, A. (1980) Thermostability and aliphatic index of globular proteins; in J Biochem (Tokyo) Vol. 88, pp. 1895-1898
  12. Jinek, M., Rehwinkel, J., Lazarus, B. D., Izaurralde, E., Hanover, J. A., et al. (2004) The superhelical TPR-repeat domain of Olinked GlcNAc transferase exhibits structural similarities to importin alpha. Nat. Struct. Mol. Biol. 11, 1001-1007 https://doi.org/10.1038/nsmb833
  13. Kim, K., Oh, J., Han, D., Kim, E. E., Lee, B., et al. (2006) Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 340, 1028-1038 https://doi.org/10.1016/j.bbrc.2005.12.108
  14. Krissinel, E. and Henrick, K. (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256-2268 https://doi.org/10.1107/S0907444904026460
  15. Kumar, S., Tsai, C. J., and Nussinov, R. (2000) Factors enhancing protein thermostability. Proteine Eng. 13, 179-191 https://doi.org/10.1093/protein/13.3.179
  16. Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  17. Kyte J, D. R. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  18. Lapouge, K., Smith, S. J., Walker, P. A., Gamblin, S. J., Smerdon, S. J., et al. (2000) Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol. Cell 6, 899-907 https://doi.org/10.1016/S1097-2765(05)00091-2
  19. Lasa, I. and Berenguer, J. (1993) Thermophilic enzymes and their biotechnological potential. Microbiologia 9, 77-89
  20. Lee, D., Won, J. H., Auh, C. K., and Park, Y. M. (2003) Purification and characterization of a cytosolic phospholipase A2 from rat liver. Mol. Cells 16, 361-367
  21. Letunic, I., Copley, R. R., Pils, B., Pinkert, S., Schultz, J., et al. (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34, D257-260 https://doi.org/10.1093/nar/gkj079
  22. Luan, C. H., Qiu, S., Finley, J. B., Carson, M., Gray, R. J., et al. (2004) High-throughput expression of C. elegans proteins. Genome Res. 14, 2102-2110 https://doi.org/10.1101/gr.2520504
  23. Magliery, T. J. and Regan, L. (2004) Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif. J. Mol. Biol. 343, 731-745 https://doi.org/10.1016/j.jmb.2004.08.026
  24. Matthews, B. W. (1968) Solvent content of protein crystals. J. Mol. Biol. 33, 491-497 https://doi.org/10.1016/0022-2836(68)90205-2
  25. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1-6 https://doi.org/10.1093/protein/10.1.1
  26. Novotny, M., Madsen, D., and Kleywegt, G. J. (2004) Evaluation of protein fold comparison servers. Proteins 54, 260-270 https://doi.org/10.1002/prot.10553
  27. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 276, 307-326 https://doi.org/10.1016/S0076-6879(97)76066-X
  28. Pallen, M. J., Francis, M. S., and Futterer, K. (2003) Tetratricopeptide- like repeats in type-III-secretion chaperones and regulators. FEMS Microbiol. Lett. 223, 53-60 https://doi.org/10.1016/S0378-1097(03)00344-6
  29. Passmore, L. A., Booth, C. R., Venien-Bryan, C., Ludtke, S. J., Fioretto, C., et al. (2005) Structural analysis of the anaphasepromoting complex reveals multiple active sites and insights into polyubiquitylation. Mol. Cell 20, 855-866 https://doi.org/10.1016/j.molcel.2005.11.003
  30. Perrakis, A., Morris, R., and Lamzin, V. S. (1999) Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458-463 https://doi.org/10.1038/8263
  31. Perry, A. J., Hulett, J. M., Likic, V. A., Lithgow, T., and Gooley, P. R. (2006) Convergent evolution of receptors for protein import into mitochondria. Curr. Biol. 16, 221-229 https://doi.org/10.1016/j.cub.2005.12.034
  32. Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L. C., et al. (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14- 3-3 in ligand binding. Mol. Cell 4, 153-166 https://doi.org/10.1016/S1097-2765(00)80363-9
  33. Schultz, J., Milpetz, F., Bork, P., and Ponting, C. P. (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857-5864
  34. Sikorski, R. S., Boguski, M. S., Goebl, M., and Hieter, P. (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60, 307-317 https://doi.org/10.1016/0092-8674(90)90745-Z
  35. Steegborn, C., Danot, O., Huber, R., and Clausen, T. (2001) Crystal structure of transcription factor MalT domain III: a novel helix repeat fold implicated in regulated oligomerization. Structure 9, 1051-1060 https://doi.org/10.1016/S0969-2126(01)00665-7
  36. Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997) A genomic perspective on protein families. Science 278, 631-637 https://doi.org/10.1126/science.278.5338.631
  37. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., et al. (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22-28 https://doi.org/10.1093/nar/29.1.22
  38. Terwilliger, T. C. and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849-861 https://doi.org/10.1107/S0907444999000839
  39. Terwilliger, T. C. and Berendzen, J. (2000) Maximum-likelihood density modification. Acta Crystallogr. D Biol Crystallogr. 56, 965-972 https://doi.org/10.1107/S0907444900005072
  40. Terwilliger, T. C. and Berendzen, J. (2003) Automated mainchain model building by template matching and iterative fragment extension. Acta Crystallogr. D Biol. Crystallogr. 59, 38-44 https://doi.org/10.1107/S0907444902018036
  41. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  42. von Mering, C., Huynen, M. A., Jaeggi, D., Schmidt, S., Bork, P., et al. (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258-261 https://doi.org/10.1093/nar/gkg034
  43. von Mering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., et al. (2005) STRING: known and predicted proteinprotein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433-437 https://doi.org/10.1093/nar/gki005
  44. Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., et al. (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531-552
  45. Wilson, C. G., Kajander, T., and Regan, L. (2005) The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. FEBS J. 272, 166-179 https://doi.org/10.1111/j.1432-1033.2004.04397.x
  46. Winn, M. D., Ashton, A. W., Briggs, P. J., Ballard, C. C., and Patel, P. (2002) Ongoing developments in CCP4 for highthroughput structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1929-1936 https://doi.org/10.1107/S0907444902016116
  47. Zhang, M., Windheim, M., Roe, S., Peggie, M., Cohen, P., et al. (2005) Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525-538 https://doi.org/10.1016/j.molcel.2005.09.023