DOI QR코드

DOI QR Code

Postnatal Expression Pattern of Adipose Type Fatty Acid Binding Protein in Different Adipose Tissues of Porcine

  • Xu, C.L. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University) ;
  • Wang, Y.H. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University) ;
  • Huang, Y.H. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University) ;
  • Liu, J.X. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University) ;
  • Feng, J. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University)
  • Received : 2006.10.05
  • Accepted : 2007.01.04
  • Published : 2007.06.01

Abstract

Adipocyte fatty acid-binding protein (A-FABP), which belongs to the FABP family, plays an essential role in long-chain fatty acid uptake and metabolic homeostasis, especially in adipose tissue. The pattern of A-FABP gene mRNA expression in different growth stages and its relation to intramuscular fat (IMF) accretion in pigs was studied. Fifteen female $Duroc{\times}Landrace{\times}Yorkshire$ pigs in five groups of three pigs each, weighing 1, 30, 50, 70 and 90 kg were used to study developmental gene mRNA expression of A-FABP in various adipose tissues by means of semi-quantitative RT-PCR. Results showed that A-FABP mRNA levels in subcutaneous and ventral adipose tissues first increased from 1 to 50 kg, then gradually declined from 50 to 90 kg. Moreover, the rank order of A-FABP mRNA levels determined in three adipose tissues was as follows: subcutaneous adipose>ventral adipose>mesenteric adipose. A-FABP mRNA expression in mesenteric adipose tissue was constant during development. In addition, a positive correlation from 1 to 50 kg BW pigs and a negative correlation from 50 to 90 kg BW between A-FABP mRNA levels in subcutaneous and ventral adipose and IMF content were found.

Keywords

References

  1. Amri, E. Z., G. Ailhaud and P. A. Grimaldi. 1994. Fatty acids as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells. J. Lipid Res. 35:930-937.
  2. Arner, P. 1995. differences in lipolysis between human subcutaneous and omental adipose tissues. Ann. Med. 27:435-438. https://doi.org/10.3109/07853899709002451
  3. Catchpole, C. and R. A. Lawrie. 1972. Influence of muscle location on fatty acid composition of total intramuscular lipids in the pig. Anim. Prod. 14:247-252. https://doi.org/10.1017/S000335610001093X
  4. Chen, J. F., Y. Z. Xiong, B. Zuo, R. Zheng, F. E. Li, M. G. Lei, J. L. Li, C. Y. Deng and S. W. Jiang. 2005. New evidences of effect of melanocortin-4 receptor and insulin-like growth factor 2 genes on fat deposition and carcass traits in different pig populations. Asian-Aust. J. Anim. Sci. 18:1542-1547. https://doi.org/10.5713/ajas.2005.1542
  5. Chmurzynska, A., M. Mackowski, M. Szydlowski, J. Melonek, M. Kamyczek and R. Eckert. 2004. Polymorphism of intronic microsatellites in the A-FABP and LEPR genes and their association with productive traits in the pig. J. Anim. Feed Sci. 13:615-624.
  6. de Koning, D. J., L. L. Janss, A. P. Rattink, P. A.Van Oers, B. J. de Viries and M. A. Groenen. 1999. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (sus scrofa). Genet. 152:1679-1690.
  7. De Vol, D. L., F. K. McKeith, P. J. Novakofski, R. D. Shanks and T. R. Carr. 1988. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J. Anim. Sci. 66:385-395. https://doi.org/10.2527/jas1988.662385x
  8. Distel, R. J., G. S. Robinson and B. M. Spiegelman. 1992. Fatty acid regulation of gene expression. J. Biol. Chem. 267:5937-5941.
  9. Fisher, R. M., P. Eriksson, J. Hoffstedt, G. S. Hotamisligil, A. Thorne, M. Ryden, A. Hamsten and P. Arner. 2001. Fatty acid binding protein expression in different adipose tissue depots from lean and obese individuals. Diabetologia. 44:1268-1273. https://doi.org/10.1007/s001250100643
  10. Gerbens, F., A. Jansen, A. J. M. Van Erp, F. Harders, T. H. E. Meuwissen, G. Rettenberger, J. H. Veerkamp and M. F. W. te Pas. 1998. The adipocyte fatty acid-binding protein locus: Characterization and association with intramuscular fat content in pigs. Mamm. Genome. 9:1022-1026. https://doi.org/10.1007/s003359900918
  11. Gerbens F., A. J. M. van Erp, F. L. Harders, F. J. Verburg, T. H. E. Meuwissen, J. H. Veerkamp and M. F. W. te Pas. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77:846-852. https://doi.org/10.2527/1999.774846x
  12. Gerbens, F., D. J. Koning, F. Harders, T. H. E. Meuwissen, L. L. G. Janss, M. A. M. Groenen, J. H. Veerkamp, J. A. M. VanArendonk and M. F. W. Tepas. 2000. The effect adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559. https://doi.org/10.2527/2000.783552x
  13. Gerbens, F., F. J. Verburg, H. T. B. Van Moerkerk, B. Engel, W. Buist, J. H. Veerkamp and M. F. W. te Pas. 2001. Association of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci. 79:347-354. https://doi.org/10.2527/2001.792347x
  14. Hotamiskigil, G. S., R. S. Johnson, R. J. Distel, R. Ellis, V. E. Papaioannou and B. M. Spiegelman. 1996. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Sci. 274:1377-1379. https://doi.org/10.1126/science.274.5291.1377
  15. Hovenier, R., E. Kanis, T. Van Asseldonk and N. G. Westerink. 1993. Breeding for pig meat quality in halothane negative populations-a review. Pig News Info. 14:17N-25N.
  16. Kissebah, A. H. and G. R. Krakower. 1994. Regional adiposity and morbidity. Physiol. Rev. 74:761-811. https://doi.org/10.1152/physrev.1994.74.4.761
  17. Lee, Y. B. and R. G. Kauffman. 1974. Celluarity and lipogenic enzyme activities of porcine inramuscular adipose tissue. J. Anim. Sci. 38:538-544. https://doi.org/10.2527/jas1974.383538x
  18. Liu, R., Y. C. Wang, D. X. Sun, Y. Yu and Y. Zhang. 2006. Association between polymorphisms of lipoprotein lipase gene andd chicken fat deposition. Asian-Aust. J. Anim. Sci. 19:1409-1414. https://doi.org/10.5713/ajas.2006.1409
  19. Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28(2):161-176. https://doi.org/10.1186/1297-9686-28-2-161
  20. Nechtelberger, D., V. Pires, J. Solkner, I. Stur, G. Brem, M. Mueller and S. Mueller. 2001. Intramuscular fat content and genetic variants at fatty acid binding protein loci in Austrian pigs. J. Anim. Sci. 79:2798-2804.
  21. Okumura, T., K. Saito, T. Nade, S. Misumi, Y. Masuda, H. Sakuma, S. Nakayama, K. Fujita and T. Kawamura. 2007. Effects of intramuscular fat on the sensory characteristics of M. longissumus dorsi in Japanese Black Steers as judged by a trained analytical panel. Asian-Aust. J. Anim. Sci. 20:577-581. https://doi.org/10.5713/ajas.2007.577
  22. Rattink, A. P., D. J. de Koning, M. Faivre, B. Harlizius, J. A. Van Arendonk and M. A. Groenen. 2000. Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mamm. Genome. 11:656-661. https://doi.org/10.1007/s003350010117
  23. Ribarik Coe, N. and D. A. Bernlohr. 1998. Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim. Biophys. Acta. 1391:287-306. https://doi.org/10.1016/S0005-2760(97)00205-1
  24. Ribarik Coe, N., M. A. Simpson and D. A. Bernlohr. 1999. Targeted siruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J. Lipid Res. 40:967-972.
  25. Richieri, G. V., R. T. Ogata and A. M. Kleinfeld. 1994. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 269:23918-23930.
  26. Scheja, L., L. Makowski and T. Uysal. 1999. Altered insulin secretion associated with reduced lipolytic efficiency in aP2 -/- mice. Diabetes 48:1987-1994. https://doi.org/10.2337/diabetes.48.10.1987
  27. Souza, D. N., D. W. Pethick, F. R. Dunshea, D. Suster, J. R. Pluske and B. P. Mullan. 2004. The pattern of fat and lean muscle tissue deposition differs in the different pork primal cuts of female pigs during the finisher growth phase. Livest. Prod. Sci. 91:1-8. https://doi.org/10.1016/j.livprodsci.2004.04.005
  28. Veerkmp, J. H. and R. G. H. J. Maatman. 1995. Cytoplasmic fatty acid binding proteins: Their structure and genes. Prog. Lipid Res. 34:17-52. https://doi.org/10.1016/0163-7827(94)00005-7
  29. Vogel-Hertzel, A. and D. A. Bernlohr. 2000. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol. Metab. 11:175-180. https://doi.org/10.1016/S1043-2760(00)00257-5
  30. Wood, J. D., M. Enser, C. B. Monsrieff and A. J. Kempster. 1988. Effects of carcass fatness and sex on the composition and quality of pig meat. Proc. 34th Int. Congr. Meat Sci. Technol. Brisbane, Australian. pp. 562-564.
  31. Wang, B. L. and J. B. Shao. 1989. The research on the growth developmental law in the commercial lean pigs. Ning xia Agr. Ind. Technol. 10:34-38.
  32. Zeng, Y. Q., G. L. Wang, C. F. Wang, S. D. Wei, Y. Wu, L. Y. Wang, H. Wang and H. L. Yang. 2005. Genetic variation of H-FABP gene and association with intramuscular fat content in Laiwu Black and Four Western pig breeds. Asian-Aust. J. Anim. Sci. 18:13-16. https://doi.org/10.5713/ajas.2005.13

Cited by

  1. Correlation of the A-FABP Gene Polymorphism and mRNA Expression with Intramuscular Fat Content in Three-Yellow Chicken and Hetian-Black Chicken vol.28, pp.1, 2017, https://doi.org/10.1080/10495398.2016.1194288
  2. Gene Expression of Heart and Adipocyte Fatty Acid-binding Protein in Chickens by FQ-RT-PCR vol.23, pp.8, 2010, https://doi.org/10.5713/ajas.2010.90556
  3. Association of A‐FABP gene polymorphism and mRNA expression with intramuscular fat content (IMF) in Baicheng‐You chicken vol.103, pp.5, 2007, https://doi.org/10.1111/jpn.13150