Defect Analysis in $Gd_2O_2S:Tb$ by Using X-ray Radiation with Positron Annihilation Methods

Lee, C.Y.;Kwon, J.H.;Kim, H.H.;Jeong, J.M.

  • Published : 20070900

Abstract

Doppler broadening positron annihilation spectroscopy (DBPAS) was used to characterize atomic-sized defect structures in materials. The screen samples were exposed to X-rays at increasing levels from 3, 6, 9 to 12 Gy at 6 and 15 MV. The S parameter values increased in correlation with increased exposure time and energy, which indicated that more defects had been generated. The S parameters of the samples from hospital use varied from 0.5099 to 0.5109. The purpose of coincidence Doppler broadening (CDB) positron annihilation spectroscopy is to analyze defect structures. We found a positive relationship between the S parameter values and the exposure to X-ray irradiation. The S-parameter values of the Gd$_2$O$_2$S:Tb samples, using CDB, varied between 0.5581 and 0.5588.

Keywords

References

  1. S. Mantl and W. Triftshauser, Phys. B 17, 1645 (1978)
  2. R. W. Siegel, Scripta Metallugica 14, 15 (1980)
  3. P. Sen, Nucl. Instr. Meth. Phys. Res. A 314, 366 (1992)
  4. A. P. Druzhkov, R. N. Yeshchenko, S. M. Klotsman, A. N. Martem'yanov and G. G. Taluts, Phys. Met. Metall. 66, 117 (1988)
  5. J. C. Wang, Y. L. You, C. Y. Jing, Q. Q. Yu, M. X. Chen and W. Zhang, Scripta Metallurgica et Materialia 25, 2357 (1991) https://doi.org/10.1016/0956-716X(91)90490-R
  6. Z. Wei, D. Yang and K. H. Wu, Scripta Metallurgica et Materialia 29, 753 (1993) https://doi.org/10.1016/0956-716X(93)90396-A
  7. H. B. Lee, Y. C. Kim and D. Y. Jeong, J. Korean Phys. Soc. 48, 279 (2006)
  8. K. C. Lim and W. F. Huang, Solid State, Commun. 87, 771 (1993) https://doi.org/10.1016/0038-1098(93)90546-Y
  9. E. J. Cho, N. N. Myung and Y. Park, J. Korean Phys. Soc. 50, 45 (2007) https://doi.org/10.3938/jkps.50.45
  10. Y. Q. Dia, S. Q. Li, Z. L. Peng, S. J. Wang and H. Liu, Phys. Stat. Sol. (a) 141, 463 (1994)
  11. C. Q. Tang, G. Y. Li, Z. H. Shi, X. Z. Li and B. T. Yao, Int. J. Fatigue 15, 515 (1993)
  12. T. Aruga, S. Takamura, M. Hirose and Y. Itoh, Phys. Rev. B 46, 14411 (1992)
  13. C. Corbel, P. Bernede, H. Pascard, F. Rullier-Albenque, R. Korman and J. F. Marucco, Appl. Phys. A 48, 335 (1989)
  14. J. C. Campuzano, L. C. Smedskjaer, R. Benedek, G. Jennings and A. Bansil, Phys. Rev. B 43, 2788 (1991)
  15. T. Aruga, S. Takamura, M. Hirose and Y. Itoh, Phys. Rev. B 46, 14411 (1992)
  16. R. Vaidyanathan, J. P. Schaffer and B. Thanaboonsmburt, Phys. Condens. Matter 5, 4563 (1993)
  17. S. Daniuk, M. Sob and A. Rubaszek, Phys. B 43, 2580 (1991)
  18. T. Nagarajan, S. Srinivasan, V. Sridharan, V. Pabha, R. Usha, B. Jayamala, K. Nandhini and A. Stephen, J. Phys. Chem. Soilds 52, 1591 (1991) https://doi.org/10.1016/0022-3697(91)90027-W
  19. J. Markinen, C. Corbel, P. Hautojarvi, P. Moser and F. Pierre, Phys. Rev. B 39, 10162 (1998)
  20. Y. Ito, M. Hirose and Y. Tabata, Appl. Phys. A 50, 39 (1990)
  21. T. Troev, I. Mincov, A. Shofan and Ch. Angelov, Phys. Lett. A 140, 147 (1989)
  22. K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe, M. F. Robbins, E. Bonderup and J. Golovchenko, Phys. Rev. Lett. 38, 241 (1977) https://doi.org/10.1103/PhysRevLett.38.977
  23. K. G. Lynn, J. E. Dickman, W. L. Brown, M. F. Robbins and E. Bonderup, Phys. Rev. B 20, 3566 (1979)
  24. P. Asoka-Kumar, M. Alatalo, V. J. Ghosh, A. C. Kruseman, B. Nielsen and K. G. Lynn, Phys. Rev. Lett. 77, 2097 (1996)
  25. K. Saarinen, J. Nissil¨a, H. Kauppinen, M. Hakala, M. J. Puska, P. Hautoj¨arvi and C. Corbel, Phys. Rev Lett. 82, 1883 (1999)