Effect of exercise training on expression of GLUT 1 and GLUT 3 protein in the hippocampus of streptozotocin-induced diabetic rats

운동훈련이 당뇨유발 흰쥐 뇌의 해마에서 GLUT 1과 GLUT 3 단백질 발현에 미치는 영향

Jeong, Il-Gyu;Yoon, Jin-Hwan;Lee, Hee-Hyuk;Kim, Jong-Oh;Seo, Tae-Beom;Oh, Myung-Jin
정일규;윤진환;이희혁;김종오;서태범;오명진

  • Published : 2007.03.31

Abstract

The purpose of this study was to examine the effect of exercise training on GLUT 1 and GLUT 3 protein expression in the hippocampus of streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley rats were randomly divided into three groups: control group (n=6), STZ-induced diabetes group (n=6), and STZ-induced diabetes and exercise group (n=6). Rats in the exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. GLUT 1 and GLUT 3 protein expression in the hippocampus was analyzed by Western blotting. GLUT 1 level in STZ-induced diabetes group was significantly higher than that in control group(p<.05). Exercise training in STZ-induced diabetic rats induced a significant increase compared with STZ-induced diabetic rats(p<.05). However, GLUT 3 level did not differ significantly among three groups. In conclusion, these results suggest that the STZ-induced diabetes may result in a compensatory increase of GLUT 1 protein expression in the rat hippocampus, and exercise training may contribute to an compensatory up-regulation of GLUT 1 protein expression in STZ-induced diabetic rats.

Keywords

References

  1. Biessels, G. J., Kamal, A., Ramakers, G. M., Urban, I. J., Spruijt, B. M., Erkelens D.W., et al. (1996). Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes, 45, 1259-1266 https://doi.org/10.2337/diabetes.45.9.1259
  2. Bandy, C. A., Lee, C. Y., & Zhou, J. (1992). Ontogeny and cellular distribution of brain glucose transporter gene expression. Molecular and Cellular Neurosciences, 3, 305-313 https://doi.org/10.1016/1044-7431(92)90027-Y
  3. Choeiri, C., Staines, W., Miki, T., Seino, S., & Messier, C. (2005). Glucose transporter plasticity during memory processing. Neuroscience, 130, 591-600 https://doi.org/10.1016/j.neuroscience.2004.09.011
  4. Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100, 2019-2022
  5. Dela, F., Ploug, T., Handberg, A., Petersen, L. N., Larsen, J. J., Mikines, K. J. et al. (1994). Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes, 43, 862-865 https://doi.org/10.2337/diabetes.43.7.862
  6. Farrell, C. L., & Pardridge, W. M. (1991). Blood -brainbarrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proceedings of the National Academy of Sciences of the United States of America, 88, 5779-5783
  7. Gispen, W. H., & Biessels, G. J. (2000). Cognition and synaptic plasticity in diabetes mellitus, Trends in Neurosciences, 23, 542-549 https://doi.org/10.1016/S0166-2236(00)01656-8
  8. Goodyear, L. J., & Kahn, B. B. (1998). Exercise, glucose transport, and insulin sensitivity. Annual Review of Medicine, 49, 235-261 https://doi.org/10.1146/annurev.med.49.1.235
  9. Gulve, E. A., & Spina, R. J. (1995). Effect of 7-10 days of cycle ergometer exercise on skeletal muscle GLUT-4 protein content. Journal of Applied Physiology, 79, 1562-1566 https://doi.org/10.1152/jappl.1995.79.5.1562
  10. Cuo, X., Geng, M., & Du, G. (2005). Glucose transporter 1, distribution in the brain and in neural disorders: its relationship with transport of neuroactive drugs through the blood-brain barrier. Biochemical Genetics, 43, 175-187 https://doi.org/10.1007/s10528-005-1510-5
  11. Houmard, J. A., Hickey, M. S., Tyndall, G. L., Gavigan, K. E., & Dohm, G. L. (1995). Seven days of exercise increase GLUT-4 protein content in human skeletal muscle. Journal of Applied Physiology, 79, 1936-1938 https://doi.org/10.1152/jappl.1995.79.6.1936
  12. Kainulainen, H., Schurmann, A., Vilja, P., & Joost, H. G. (1993). In-vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT3 in brain tissue from streptozotocin -diabetic rats. Acta Physiologica Scandinavica, 149, 221-225 https://doi.org/10.1111/j.1748-1716.1993.tb09615.x
  13. Kuo, C. H., Hwang, H., Lee, M. C., Castle, A. L., & Ivy, J. L. (2004). Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle. Journal of Applied Physiology, 96, 621-627 https://doi.org/10.1152/japplphysiol.00830.2003
  14. Lee, W. H., & Bandy, C. A. (1993). Ischemic injury induces brain glucose transport gene expression. Endocrinology, 133, 2540-2544 https://doi.org/10.1210/en.133.6.2540
  15. Li, Z. G., Sima, A. A. (2004). C-peptide and central nervous system complications in diabetes. Experimental Diabesity Research, 5, 79-90 https://doi.org/10.1080/15438600490424550
  16. Lund-Andersen, H. (1979). Transport of glucose from blood to brain. Physiological Reviews, 59, 305-352 https://doi.org/10.1152/physrev.1979.59.2.305
  17. McCall, L. (1992). The impact of diabetes on the CNS. Diabetes, 41, 557-570 https://doi.org/10.2337/diabetes.41.5.557
  18. McEwen, B. S., & Reagan, L. P. (2004). Glucose transporter expression in the central nervous system: relationship to synaptic function. European Journal of Pharmacology, 490, 13-24 https://doi.org/10.1016/j.ejphar.2004.02.041
  19. Mooradian, A. D. (1988). Diabetic complications of The central nervous system. Endocrine reviews, 9, 346-356 https://doi.org/10.1210/edrv-9-3-346
  20. Munshi, M., Grande, L., Hayes, M., Ayres, D., Suhl, E., Capelson, R., et al. (2006). Cognitive dysfunction is associated with poor diabetes control in older adults. Diabetes Care, 29, 1794-1799 https://doi.org/10.2337/dc06-0506
  21. Nagamatsu, S., Sawa, H., Inoue, N., Nakamichi, Y., Takeshima, H., & Hoshino, T. (1994). Gene expression of GLUT3 glucose transporter regulated by glucose in vivo in mouse brain and in vitro in neuronal cell cultures from rat embryos. The Biochemical Journal, 300, 125-131 https://doi.org/10.1042/bj3000125
  22. Nagamatsu, S., Sawa, H., Kamada, K., Nakamichi, Y., Yoshimoto, K., & Hoshino, T. (1993). Neuron-specific glucose transporter (NSGI): CNS distribution of GLUT3 rat glucose transporter (RGT3) in rat central neurons. FEBS Letters, 334, 289-295 https://doi.org/10.1016/0014-5793(93)80697-S
  23. Park, S., Jang, J. S., Jun, D. W., & Hong, S. M. (2005). Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinology, 82, 282-293 https://doi.org/10.1159/000093127
  24. Phillips, S. M., Ban, X. X., Green, H. J., & Bonen, A. (1996). Increments in skeletal muscle GLUT-1 and GLUT-4 after enduran:e training in humans. American Journal of Physiology. Endocrinology and Metabolism, 270, 456-462
  25. Piert, M., Koeppe, R. A., Giordani, B., Berent, S., & Kuhl, D. E. (1996). Diminished glucose transport and phosphorylation in Alzheimer's disease determined by dynamic FDG-PET. Journal of Nuclear Medicine, 37, 201-218
  26. Reagan, L. P., Gorovits, N., Hoskin, E. K., Alves, S. E., Katz, E. B., Grillo, C. A., et al. (2001). Localization and regulation of GLUTx1 glucose transporter in the hippocampus of streptozotocin diabetic rats. Proceedings of the National Academy of Sciences of the United States of America, 98, 2820-2825
  27. Reagan, L. P. (2002). Glucose, stress and hippocampal neuronal vulnerability. International Review of Neurobiology, 51, 289-324 https://doi.org/10.1016/S0074-7742(02)51009-6
  28. Ryan, C. M., & Geckle, M. O. (2000). Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care, 23, 1486-1493 https://doi.org/10.2337/diacare.23.10.1486
  29. Stewart, R., & Liolitsa, D. (1999). Type 2 diabetes mellitus, cognitive impairment and dementia Diabetic Medicine, 16, 93-112 https://doi.org/10.1046/j.1464-5491.1999.00027.x
  30. Strachan, M. W. J., Ewing, F. M. E., Deary, I. J., & Frier, B. M. (1997). Is type IT diabetes associated with an increased risk of cognitive dysfunction? Diabetes Care, 20, 438-445 https://doi.org/10.2337/diacare.20.3.438
  31. Uehara, Y., Nipper, V., & McCall, A. L. (1997). Chronic insulin hypoglycemia induces GLUT-3 protein in rat brain neurons. The American Journal of Physiology, 272, 716-719
  32. Vannucci, S. J., Clark, R. R., Koehler-Stec, E., Li, K, Smith, C. B., Davies, P., et al. (1998a). Glucose transporter expression in brain: relationship to cerebral glucose utilization. Developmental Neuroscience, 20, 369-379 https://doi.org/10.1159/000017333
  33. Vannucci, S. J., Koehler-Stec, E. M., Li, K., Reynolds, T. H., Clark, R., & Simpson, I. A. (1998b). GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Research, 22, 797, 1-11 https://doi.org/10.1016/0006-8993(70)90398-7
  34. Vannucci, S. J., Maher, F., & Simpson, I. A. (1997). Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia, 21, 2-21 https://doi.org/10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C
  35. Zeller, K., Duelli, R., Voge1, J., Schrock, H., & Kuschinsky, W. (1995). Autoradiographic analysis of the regional distribution of Glut3 glucose transporters in the rat brain Brain Research, 698, 175-179 https://doi.org/10.1016/0006-8993(95)00888-W