Preparation of Nanoparticles by Gas Phase Processes

기상 공정에 의한 나노 미립자 제조

  • Kim, Dong-Joo (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Kyo-Seon (Department of Chemical Engineering, Kangwon National University)
  • Received : 2007.08.07
  • Accepted : 2007.09.12
  • Published : 2007.12.31

Abstract

The nanoparticles have several interesting properties which cannot be shown in their bulk materials because of their high ratio of surface area to volume. They can be used to manufacture the nanostructured materials, the industrial materials, or the catalyst materials etc.. We can prepare nanoparticles of various sizes with high degree of monodispersity by gas phase processes and those particles can be used as raw materials for various advanced functional materials. In this paper, we introduced the aerosol reactors to synthesize nanoparticles by gas phase processes and also analyzed several features of those aerosol reactors and tried to introduce the recent interesting studies on nanoparticle synthesis by gas phase processes.

나노 미립자는 부피대비 높은 표면적을 가지고 있기 때문에 벌크 상태에서는 볼 수 없는 여러 흥미로운 성질들을 가지고 있다. 나노 미립자들은 나노 구조체 재료, 산업용 재료 혹은 촉매 재료 등을 제조하는데 사용될 수 있다. 기상공정에 의해 높은 단분산성을 갖는 다양한 크기의 나노 미립자를 제조할 수 있으며 제조된 미립자는 각종 첨단 기능성 재료의 원료로 이용될 수 있다. 본고에서는 기상공정을 통하여 나노 미립자 제조에 이용되는 에어로솔 반응기들을 소개하였으며 각 반응기의 특성을 분석하였고 기상 공정에 의한 미립자 제조에 관련된 최근 흥미 있는 연구들을 소개하도록 하였다.

Keywords

References

  1. http://www.ptl.ethz.ch/people/director/pratsinis/index
  2. Kim. D. S. and Kim. T. O., Fine Particle Technology, Daewoong, Seoul(2001)
  3. Gotoh, K., Masuda, H. and Higashitani, K., Power Technology Handbook, 2nd ed., Marcel Dekker, New York(1997)
  4. Young, R. M. and Pfender, E., 'Generation and Behavior of Fine Particles in Thermal Plasmas-A review,' Plasma Chem. Plasma Process., 5(1), 1-37(1985) https://doi.org/10.1007/BF00567907
  5. Pratsinis, S. E. and Vemury, S., 'Particle Formation in Gases : a Review,' Powder Technol., 88(3), 267-273(1996) https://doi.org/10.1016/S0032-5910(96)03130-0
  6. Kruis, F. E., Fissan, H. and Peled, A., 'Synthesis of Nanoparticles in the Gas Phase for Electric, Optical and Magnetic Applications-A Review,' J. Aerosol Sci., 29(5-6), 511-535(1998) https://doi.org/10.1016/S0021-8502(98)00079-2
  7. Choi, M., 'Research in Korea on Gas Phase Synthesis and Control of Nanoparticles,' J. Nanoparticle Res., 3(2-3), 201-211(2001) https://doi.org/10.1023/A:1017996922068
  8. Pratsinis, S. E. and Mastrangelo, S. V. R., 'Material Synthesis in Aerosol Reactors,' Chem. Eng. Prog., 85(5), 62-66(1989)
  9. Friedlander, S. K., Smoke, Dust and Haze, Wiley, New York(1977)
  10. Seinfeld, J. H., Atmospheric Chemistry and Physics of Air Pollution, Wiely, New York(1986)
  11. Kim, M. C., Bae, G.-N., Moon, K.-C. and Park, J.-Y., Formation and Growth of Atmospheric Aerosols by Water Vapor Reactions in an Indoor Smog Chamber, J. Korean Soc. Atmos. Environ., 20(2), 161-174(2004)
  12. Jeon, K.-J. and Jung, Y.-W., 'A Simulation Study on the Compression Behavior of Dust Cakes,' Powder Technol., 141(1-2), 1-11(2004) https://doi.org/10.1016/j.powtec.2003.12.014
  13. Kim, K. S. and Pratsinis, S. E., 'Manufacture of Optical Waveguide Preforms by Modified Chemical Vapor Deposition,' AIChE J., 34(6), 912-921(1988) https://doi.org/10.1002/aic.690340603
  14. Wu, J. J. and Flagan, R. C., 'Onset of Runaway Nucleation in Aerosol Reactors,' J. Appl. Phys., 61(4), 1365-1371(1987) https://doi.org/10.1063/1.338115
  15. Morooka, S., Kobata, A., Umeda, T. and Kusakabe, K., 'Average Size and Rutile Content of $TiO_{2}$ Particles Produced by Oxidation of $TiCl_{4}$ without Additives in Aerosol Reactors,' J. Chem. Eng. Jpn., 22(1), 94-96(1989) https://doi.org/10.1252/jcej.22.94
  16. Scheibel, H. G. and Porstendorfer, J., 'Generation of Monodisperse Ag- and NaCl-aerosol with Particle Diameters between 2 and 300 nm,' J. Aerosol Sci., 14(2), 113-126(1983) https://doi.org/10.1016/0021-8502(83)90035-6
  17. Kruis, F. E., Goossens, A. and Fissan, H., 'Synthesis of Semiconducting Nanoparticles,' J. Aerosol Sci., 27(S1), S165-S166(1996) https://doi.org/10.1016/0021-8502(96)00155-3
  18. Nakaso, K., Okuyama, K., Shimada, M. and Pratsinis, S. E., 'Effect of Reaction Temperature on CVD-made $TiO_{2}$ Primary Particle Diameter,' Chem. Eng. Sci., 58(15), 3327-3335(2003) https://doi.org/10.1016/S0009-2509(03)00213-6
  19. Choi, J. G. and Park, K. Y., 'Effect of Reaction Atmosphere on Particle Morphology of $TiO_{2}$ Produced by Thermal Decomposition of Titanium Tetraisopropoxide,' J. Nanoparticle Res., 8(2), 269-278(2006) https://doi.org/10.1007/s11051-005-9042-9
  20. Kim, K. S., 'Analysis of Ultrafine Particles Generation and Deposition Using Tube Furnace Reactor,' AIChE J., 43(11A), 2679-2687(1997) https://doi.org/10.1002/aic.690431312
  21. Hyun, B. S. and Kim, K. S., 'A Study on Modeling of Tube Furnace Reactor for Fabrication of Ultrafine $TiO_{2}$ Powders,' Korean Chem. Eng. Res., 33(2), 183-191(1995)
  22. Paradise, M. and Goswami, T., 'Carbon Nanotubes : Production and Industrial Applications,' Mater. Des., 28(5), 1477-1489(2007) https://doi.org/10.1016/j.matdes.2006.03.008
  23. Barreiro, A., Kramberger, C., Rummeli, M. H., Gruneis, A., Grimm, D., Hampel, S., Gemming, T., Buchner, B., Bachtold, A. and Pichler, T., 'Control of the Single-wall Carbon Nnanotube Mean Diameter in Sulphur Promoted Aerosol-assisted Chemical Vapour Deposition,' Carbon, 45(1), 55-61(2007) https://doi.org/10.1016/j.carbon.2006.08.013
  24. Ulrich, G. D., 'Theory of Particle Formation and Growth in Oxide Synthesis Flames,' Combust. Sci. Technol., 4(1), 47-57(1971) https://doi.org/10.1080/00102207108952471
  25. Wood, D. L., Potkay, E., Clark, H. R. and Kometani, T. Y., 'Characterization of Torch-deposited Silica for Light-Guide Preforms,' Appl. Spectroscopy, 42(2), 299-304(1988) https://doi.org/10.1366/0003702884428248
  26. Chae, B. S. and Kim, K. S., 'The Effects of Process Variables in Preparing Ultrafine $TiO_{2}$ Particles by a Diffusion Flame Reactor,' Korean Chem. Eng. Res., 37(6), 821-827(1999)
  27. Wegner, K. and Pratsinis, S. E., 'Gas-phase Synthesis of Nanoparticles: Scale-up and Design of Flame Reactors,' Powder Technol., 150(2), 117-122(2005) https://doi.org/10.1016/j.powtec.2004.11.022
  28. Ahn, K. H., Sohn, S. H., Jung, C. H. and Choi, M., 'In Situ Measurement of Nano Particle Size Distribution and Charge Characteristics in $H_{2}/O_{2}/TEOS$ Diffusion Flame,' Scripta Mater., 44(8-9), 1889-1892(2001) https://doi.org/10.1016/S1359-6462(01)00806-5
  29. Vander Wal, R. L, Ticich, T. M. and Curtis, V. E., 'Diffusion Flame Synthesis of Single-walled Carbon Nanotubes,' Chem. Phys. Lett., 323(3-4), 217-223(2000) https://doi.org/10.1016/S0009-2614(00)00522-4
  30. Height, M. J., Howard, J. B., Tester, J. W. and Vander Sande, J. B., 'Flame Synthesis of Single-walled Carbon Nanotubes,' Carbon, 42(11), 2295-2307(2004) https://doi.org/10.1016/j.carbon.2004.05.010
  31. Kim, K.-H., Lee, I.-H., Kim, K.-S. and Kim, D.-J., Plasma Equipments for Nanotechnology Process, Prospect. Ind. Chem., 8(6), 56-71(2005)
  32. Girshik, S. L., Chiu, C. P. and McMurry, P. H., 'Modelling Particle Formation and Growth in a Plasma Synthesis Reactor,' Plasma Chem. Plasma Process., 8(2), 145-157(1988) https://doi.org/10.1007/BF01016154
  33. Rhee, S. W. and Park, H. S., Synthesis of Ceramic Powders by High Temperature Chemical Reactions, Sci. Technol. Ceram. Mater., 3(4), 309-317(1988)
  34. Oh, S.-M. and Park, D.-W., 'Production of Ultrafine Titanium Dioxide by DC Plasma Jet,' Thin Solid Films, 386(2), 233-238(2001) https://doi.org/10.1016/S0040-6090(00)01648-5
  35. Hong, S. H., Thermal Plasma and Material Process Technology, Phys. High Technol., 7(9), 27-34(1998)
  36. Seo, J. H., Kim, D. U., Nam, J. S., Hong, S. H., Sohn, S. B. and Song, S. M., 'Radio Frequency Thermal Plasma Treatment for Size Reduction and Spheroidization of Glass Powders Used in Ceramic Electronic Devices,' J. Am. Ceram. Soc., 90(6), 1717-1722(2007) https://doi.org/10.1111/j.1551-2916.2007.01645.x
  37. Mizuguchi, Y., Kagawa, M., Suzuki, M., Syono, Y. and Hirai, T., 'Synthesis of Ultrafine Particles and Thin Films of $BaFe_{12}O_{19}$ by the Spray-ICP Technique,' Nanostruct. Mater., 4(5), 591-596(1994) https://doi.org/10.1016/0965-9773(94)90068-X
  38. Kim, K.-S. and Kim, D.-J., 'Modeling of Rapid Particle Growth by Coagulation in Silane Plasma Reactor,' J. Appl. Phys., 87(6), 2691-2699(2000) https://doi.org/10.1063/1.372243
  39. Kim, D.-J. and Kim, K.-S., 'Analysis on Nanoparticle Growth by Coagulation in Silane Plasma Reactor,' AIChE J., 48(11), 2499-2509(2002) https://doi.org/10.1002/aic.690481109
  40. Kim, K.-S., Kim, D.-J., Yoon, J. H., Park, J. Y., Watanabe, Y. and Shiratani, M., 'The Changes in Particle Charge Distribution during Rapid Growth of Particles in the Plasma Reactor,' J. Colloid Interf. Sci., 257(2), 195-207(2003) https://doi.org/10.1016/S0021-9797(02)00049-8
  41. Kim, D.-J., Kim, K.-S. and Zhao, Q.-Q., 'Production of Monodisperse Nanoparticles and Application of Discrete-Monodisperse Model in Plasma Reactors,' J. Nanoparticle Res., 5(3-4), 211-223(2003) https://doi.org/10.1023/A:1024419508770
  42. Shiratani, M., Fukuzawa, T. and Watanabe, Y., 'Particle Growth Kinetics in Silane RF Discharges,' Jpn. J. Appl. Phys., 38(7B), 4542-4549(1999) https://doi.org/10.1143/JJAP.38.4542
  43. McCurdy, P. R., Truitt, J. M. and Fisher, E. R., 'Pulsed and Continuous Wave Plasma Deposition of Amorphous, Hydrogenated Silicon Carbide from $SiH_{4}/CH_{4}$ Plasmas,' J. Vac. Sci. Technol. A, 17(5), 2475-2484(1999) https://doi.org/10.1116/1.582105
  44. Madan, A. and Morrison, S., 'High Deposition Rate Amorphous and Polycrystalline Silicon Materials Using the Pulsed Plasma and Hot-Wire CVD Technique,' Solar Energy Mater. Solar Cells, 55(1-2), 127-139(1998) https://doi.org/10.1016/S0927-0248(98)00058-0
  45. Kim, D.-J. and Km, K.-S., 'Quantitative Analysis on the Growth of Negative Ions in Pulse Modulated $SiH_{4}$ Plasmas,' Ind. Eng. Chem. Res., 44(21), 7907-7915(2005) https://doi.org/10.1021/ie0503803
  46. Kim, K.-S., Kim, D.-J. and Zhao, Q.-Q., 'Numerical Analysis on Particle Coating by the Pulsed Plasma Process,' Chem. Eng. Sci., 61(10), 3278-3289(2006) https://doi.org/10.1016/j.ces.2005.12.003
  47. Matsui, I., 'Preparation of Magnetic Nanoparticles by Pulsed Plasma Chemical Vapor Synthesis,' J. Nanoparticle Res., 8(3-4), 429-443(2006) https://doi.org/10.1007/s11051-005-9009-x
  48. Kim, K., Cho, Y., Kim, Y. and Kim, T., 'Generation of Si Nanoparticles Using Plasma Technology for Novel Device and Energy Storage Application,' Proceedings of 2007 ASME International Mechanical Engineering Congress and Exposition (IMECE2007), Nov. Seattle, Washington, USA(2007)
  49. Cao, J. and Matsoukas, T., 'Synthesis of Hollow Nanoparticles by Plasma Polymerization,' J. Nanoparticle Res., 6(5), 447-455(2004) https://doi.org/10.1007/s11051-004-2716-x
  50. Barankin, M. D., Creyghton, Y. and Schmidt-Ott, A., 'Synthesis of Nanoparticles in an Atmospheric Pressure Glow Discharge,' J. Nanoparticle Res., 8(3-4), 511-517(2006) https://doi.org/10.1007/s11051-005-9013-1
  51. Hoder, T., Kudrle, V., Frgala, Z. and Janca, J., 'Microwave Plasma Used for ${\alpha}$-Fe Nanoparticles Synthesis,' WDS'05 Proceedings of Contributed Papers, Part II, 300-305(2005)
  52. Iwama, S., Hayakawa, K. and Arizumi, T., 'Ultrafine Powders of TiN and AlN Produced by a Reactive Gas Evaporation Technique with Electron Beam Heating,' J. Crystal Growth, 56(2), 265-269(1982) https://doi.org/10.1016/0022-0248(82)90443-2
  53. Gunther, B. and Kumpmann, A., 'Ultrafine Oxide Powders Prepared by Inert Gas Evaporation,' Nanstruct. Mater., 1(1), 27-30(1992) https://doi.org/10.1016/0965-9773(92)90047-2
  54. Saunders, W. A., Sercel, P. C., Lee, R. B., Atwater, H. A., Vahala, K. J., Flagan, R. C. and Escorcia-Aparcio, E. J., 'Synthesis of Luminescent Silicon Clusters by Spark Ablation,' Appl. Phys. Lett., 63(11), 1549-1551(1993) https://doi.org/10.1063/1.110745
  55. Kim, H. J., Kim, J. H., Choi, Y. J., Oh, H. C., Chu, J. B. and Kim, S. S., 'Generation of Model Diesel Particles by Spark Discharge and Hydrocarbon Condensation,' J. Mech. Sci. Technol., 20(11), 1972-1979(2006) https://doi.org/10.1007/BF03027590
  56. Byeon, J. H., Park, J. H., Yoon, K. Y., Ko, B. J., Ji, J. H. and Hwang, J., 'Removal of Volatile Organic Compounds by Spark Generated Carbon Aerosol Particles,' Carbon, 44(10), 2106-2108(2006) https://doi.org/10.1016/j.carbon.2006.03.033
  57. Guo, Z., Du, F. and Yu, S., 'One-step Synthesis of Porous Palladium Nanostructures by $H_{2}$+He Arc Plasma Method,' J. Nanoparticle Res., 7(1), 95-99(2005) https://doi.org/10.1007/s11051-004-7897-9
  58. Cui, Z., Zhang, Z., Hao, C., Dong, L., Meng, Z. and Yu, L., 'Structures and Properties of Nano-particles Prepared by Hydrogen Arc Plasma Method,' Thin Solid Films, 318(1-2), 76-82(1998) https://doi.org/10.1016/S0040-6090(97)01127-9
  59. Cannon, W. R., Danforth, S. C., Haggerty, J. S. and Murra, R. A., 'Sinterable Ceramic Powders from Laser-driven Reactions: II, Powder Characteristics and Process Variables,' J. Am. Ceram. Soc., 65(7), 330-335(1982) https://doi.org/10.1111/j.1151-2916.1982.tb10465.x
  60. Cauchetier, M., Croix, O., Luce, M., Michon, M., Paris, J. and Tistchenko, S., 'Laser Synthesis of Ultrafine Powders,' Ceram. Int., 13(1), 13-17(1987) https://doi.org/10.1016/0272-8842(87)90033-2
  61. Alexandrescu, R., Dumitrache, F., Morjan, I., Sandu, I., Savoiu, M., Voicu, I., Fleaca, C. and Piticescu, R., '$TiO_{2}$ Nanosized Powders by $TiCl_{4}$ Laser Pyrolysis,' Nanotechnology, 15(5), 537-545(2004) https://doi.org/10.1088/0957-4484/15/5/023
  62. Leconte, Y., Maskrot, H., Combemale, L., Herlin-Boime, N., Reynaud, C., 'Application of the Laser Pyrolysis to the Synthesis of SiC, TiC and ZrC Pre-ceramics Nanopowders,' J. Anal. Appl. Pyrolysis, 79(1-2), 465-470(2007) https://doi.org/10.1016/j.jaap.2006.11.009
  63. Jang, D. and Kim, D., 'Synthesis of Nanoparticles by Pulsed Laser Ablation of Consolidated Metal Microparticles,' Appl. Phys. A, 79(8), 1985-1988(2004) https://doi.org/10.1007/s00339-003-2237-y
  64. Noel, S., Hermann, J. and Itina, T., 'Investigation of Nanoparticle Generation during Femtosecond Laser Ablation of Metals,' Appl. Surf. Sci., 253(15), 6310-6315(2007) https://doi.org/10.1016/j.apsusc.2007.01.081
  65. Dammer, O., Blanka Vlckova, B., Slouf, M. and Pfleger, J., 'Interaction of High-power Laser Pulses with Monodisperse Gold Particles,' Mater. Sci. Eng. B, 140(3), 138-146(2007) https://doi.org/10.1016/j.mseb.2007.03.013
  66. Gurav, A., Kodas, T., Pluym, T. and Xiong, Y., 'Aerosol Processing of Materials,' Aeosol Sci. Technol., 19(4), 411-452(1993) https://doi.org/10.1080/02786829308959650
  67. Siegel, R. W. Morfin-Lopez, J. L. and Sanchez, J. M. (Ed.), Advanced Topics in Materials Science and Engineering, Plenum, New York (1993)
  68. Jung, C. H., Park, S. H. and Kim, Y. P., 'Size Distribution of Polydispersed Aerosols during Condensation in the Continuum Region: Analytical Approach Using the Moment Method,' J. Aerosol Sci., 37(10), 1400-1406(2006) https://doi.org/10.1016/j.jaerosci.2006.01.014
  69. Tasaki, A., Tomiyama, S., Iida, S., Wada, N. and Uyeda, R., 'Magnetic Properties of Eerromagnetic Metal Fine Particles Prepared by Evaporation in Argon Gas,' Jap. J. Appl. Phys., 4(10), 707-711(1965) https://doi.org/10.1143/JJAP.4.707
  70. Chow, G.-M., Klemens, P. G. and Strutt, P. R., 'Nanometer-size Fiber Composite Synthesis by Laser-induced Reactions,' J. Appl. Phys., 66(7), 3304-3308(1989) https://doi.org/10.1063/1.344125
  71. Hahn, H. and Averback, R. S., 'The Production of Nanocrystal-Line Powders by Magnetron Sputtering,' J. Appl. Phys., 67(2), 1113-1115(1990) https://doi.org/10.1063/1.345798
  72. Yamada, I., Usui, H. and Takagi, T., 'Formation Mechanism of Large Clusters from Vaporized Solid Material,' J. Phys. Chem., 91(10), 2463-2468(1987) https://doi.org/10.1021/j100294a004
  73. Bowles, R. S., Kolstad, J. J., Calo, J. M. and Andres, R. P., 'Generation of Molecular Clusters of Controlled Size,' Surf. Sci., 106(1-3), 117-124(1981) https://doi.org/10.1016/0039-6028(81)90173-4
  74. Bayazitoglu, Y., Brotzen, F. R. and Zhang, Y., 'Metal Vapor Condensation in a Converging Nozzle,' Nanostruct. Materials, 7(7), 789-803(1996) https://doi.org/10.1016/S0965-9773(96)00044-X
  75. Abdullah, M., Iskandar, F., Shibamoto, S., Ogi, T. and Okuyama, K., 'Preparation of Oxide Particles with Ordered Macropores by Colloidal Templating and Spray Pyrolysis,' Acta Mater., 52(17), 5151-5156(2004) https://doi.org/10.1016/j.actamat.2004.07.021
  76. Kang, D.-J., Kim, K.-N. and Kim, S.-G., 'Morphologies and Properties of NiO Particles Prepared from $NiSO_{4}6H_{2}O$ and $Ni(NO_{3})_{2}6H_{2}O$ by Spray Pyrolysis,' J. Mater. Sci., 40(23), 6283-6289(2005) https://doi.org/10.1007/s10853-005-3141-y
  77. Kang, Y. C. and Park, S. B., 'Effect of Preparation Conditions on the Formation of Primary ZnO Particles in Filter Expansion Aerosol Generator,' J. Mater. Sci. Lett., 16(2), 131-133(1997) https://doi.org/10.1023/A:1018594027311
  78. Wang, W.-N., Itoh, Y., Lenggoro, I. W. and Okuyama, K., 'Nickel and Nickel Oxide Nanoparticles Prepared from Nickel Nitrate Hexahydrate by a Low Pressure Spray Pyrolysis,' Mater. Sci. Eng. B, 111(1), 69-76(2004) https://doi.org/10.1016/j.mseb.2004.03.024
  79. Wang, W.-N., Lenggoro, I. W., Terashi, Y., Kim, T. O. and Okuyama, K., 'One-step Synthesis of Titanium Oxide Nanoparticles by Spray Pyrolysis of Organic Precursors,' Mater. Sci. Eng. B, 12(3), 194-202(2005)
  80. Xia, B., Lenggoro, I. W. and Okuyama, K., 'Novel Route to Nanoparticle Synthesis by Salt-assisted Aerosol Decomposition,' Adv. Mater., 13(20), 1579-1582(2001) https://doi.org/10.1002/1521-4095(200110)13:20<1579::AID-ADMA1579>3.0.CO;2-G
  81. Lee, S. G., Choi, S. M. and Lee, D., 'The Role of Salt in Nanoparticle Generation by Salt-assisted Aerosol Method: Microstructural Changes,' Thermochim. Acta, 455(1-2), 138-147(2007) https://doi.org/10.1016/j.tca.2006.11.020
  82. Mueller, R., Madler, L. and Pratsinis, S. E., 'Nanoparticle Synthesis at High Production Rates by Flame Spray Pyrolysis,' Chem. Eng. Sci., 58(10), 1969-1976(2003) https://doi.org/10.1016/S0009-2509(03)00022-8
  83. Strobel, R., Krumeich, F., Stark, W. J., Pratsinis, S. E. and Baiker, A., 'Flame Spray Synthesis of Pd/Al2O3 Catalysts and Their Behavior in Enantioselective Hydrogenation,' J. Catal., 222(2), 307-314(2004) https://doi.org/10.1016/j.jcat.2003.10.012
  84. Jang, H. D., Chang, H., Suh, Y. and Okuyama, K., 'Synthesis of $SiO_{2}$ Nanoparticles from Sprayed Droplets of Tetraethylorthosilicate by the Flame Spray Pyrolysis,' Curr. Appl. Phys., 6(S1), e110-e113(2006) https://doi.org/10.1016/j.cap.2006.01.021
  85. Tang, K. and Gomez, A., 'Monodisperse Electrosprays of Low Electric Conductivity Liquids in the Cone-jet Mode,' J. Colloid Interf. Sci., 184(12), 500-511(1996) https://doi.org/10.1006/jcis.1996.0645
  86. Lenggoro, I. W., Okuyama, K., Fernandez de la Mora, J. and Tohg, N., 'Preparation of ZnS Nanoparticles by Electrospray Pyrolysis,' J. Aerosol Sci., 31(1), 121-136(2000) https://doi.org/10.1016/S0021-8502(99)00534-0
  87. Cole, R. B., Electrospray Ionization Mass Spectroscopy, Wiley-Interscience(1997)
  88. Park, H., Kim, K. and Kim, S. S., 'Effects of a Quard Plate on the Characteristics of an Electrospray in the Cone-jet Mode,' J. Aerosol Sci., 35(11), 1295-1312(2004) https://doi.org/10.1016/j.jaerosci.2004.05.012
  89. Wilhelm, O., Madler, L. and Pratsinis, S. E., 'Electrospray Evaporation and Deposition,' J. Aerosol Sci., 34(7), 815-836(2003) https://doi.org/10.1016/S0021-8502(03)00034-X
  90. Nakasoa, K., Han, B., Ahn, K. H., Choi, M. and Okuyama, K., 'Synthesis of Non-agglomerated Nanoparticles by an Electrospray Assisted Chemical Vapor Deposition (ES-CVD) Method,' J. Aerosol Sci., 34(7), 869-881(2003) https://doi.org/10.1016/S0021-8502(03)00053-3
  91. Jung, J. and Perrut, M., 'Particle Design Using Supercritical Fluids: Literature and Patent Survey,' J. Supercrit. Fluids, 20(3), 179-219(2001) https://doi.org/10.1016/S0896-8446(01)00064-X
  92. Pack, J. W., Kim, S. H., Park, S. Y., Lee, Y.-W. and Kim, Y. H., 'Effects of Pressure and Temperature on the Kinetics of L-Lactide Polymerization in Supercritical Chlorodifluoromethane,' Macromolecules, 37(10), 3564-3568(2004) https://doi.org/10.1021/ma049951d
  93. Fages, J., Lochard, H., Letourneau, J.-J., Sauceau, M. and Rodier, E., 'Particle Generation for Pharmaceutical Applications Using Ssupercritical Fluid Technology,' Powder Technol., 141(3), 219-226(2004) https://doi.org/10.1016/j.powtec.2004.02.007
  94. Rodrigues, M., Peirio, N., Matos, H., Gomes de Azevedo, E., Lobato, M. R. and Almeida, A. J., 'Microcomposites Theophylline/hydrogenated Palm Oil from a PGSS Process for Controlled Drug Delivery Systems,' J. Supercrit. Fluids, 29(1-2), 175-184(2004) https://doi.org/10.1016/S0896-8446(03)00031-7