Opposing Effects of ERK and p38 MAP Kinases on HeLa Cell Apoptosis Induced by Dipyrithione

  • Fan, Yumei (Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University) ;
  • Chen, Hui (Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University) ;
  • Qiao, Bo (Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University) ;
  • Luo, Lan (State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Ma, Hsiaoyen (State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Li, Heng (State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Jiang, Jihong (Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Xuzhou Normal University) ;
  • Niu, Dezhong (Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Xuzhou Normal University) ;
  • Yin, Zhimin (Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University)
  • Received : 2006.09.23
  • Accepted : 2006.11.20
  • Published : 2007.02.28

Abstract

Dipyrithione (2, 2'-dithiobispyridine-1, 1'-dioxide, PTS2), a pyrithione derivate, is highly bactericidal and fungicidal. In this study we examined its apoptotic effect on HeLa cells. PTS2 induced HeLa cell death in a dose and time dependent manner. ERK1/2 and p38 were markedly activated, but little JNK1/2 activation was detected. Suppression of p38 activation by SB203580 reduced the extent of apoptosis of the HeLa cells and also prevented induction of p21, release of cytochrome c, and cleavage of caspase-3 and PARP. Inhibition of ERK1/2 with PD98059 increased apoptosis, indicating that ERK1/2 activation has an anti-apoptotic effect on PTS2-induced HeLa cell apoptosis. PTS2 also inhibited murine sarcoma 180 and hepatoma 22 tumor growth in an animal tumor model. Our findings indicate that PTS2 possesses anti-tumor activity, that caspase-3 and poly (ADP-ribose) polymerase (PARP) are involved in PTS2-induced HeLa cell apoptosis and that ERK1/2 and p38 have opposing effects on this apoptosis.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Alderton, F., Humphrey, P. P., and Sellers, L. A. (2001) Highintensity p38 kinase activity is critical for p21(cip1) induction and the anti-proliferative function of G(i) proteincoupled receptors. Mol. Pharmacol. 59, 1119−1128
  2. Allen, T. R., Hunter, W. J., and Agrawal, D. K. (1997) Morphological and biochemical characterization and analysis of apoptosis. J. Pharmacol. Toxicol. Methods 37, 215−228
  3. An, W. W., Gong, X. F., Wang, M. W., Tashiro, S., Onodera, S., et al. (2004) Norcantharidin induces apoptosis in HeLa cells through caspase, MAPK, and mitochondrial pathways. Acta Pharmacol. Sin. 25, 1502−1508
  4. Arai, A., Jin, A., Yan, W., Mizuchi, D., Yamamoto, K., et al. (2005) SDF-1 synergistically enhances IL-3-induced activation of the Raf-1/MEK/Erk signaling pathway through activation of Rac and its effector Pak kinases to promote hematopoiesis and chemotaxis. Cell. Signal. 17, 497−506
  5. Ashkenazi, A. and Dixit, V. M. (1998) Death receptors: signaling and modulation. Science 281, 1305−1308
  6. Bartek, J. and Lukas, J. (2001) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 490, 117−122
  7. Boldt, S., Weidle, U. H., and Kolch, W. (2002) The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis 23, 1831–1838
  8. Cao, J., Semenova, M. M., Solovyan, V. T., Han, J., Coffey, E. T., et al. (2004) Distinct requirements for p38alpha and c-Jun N-terminal kinase stress-activated protein kinases in different forms of apoptotic neuronal death. J. Biol. Chem. 279, 35903−25913
  9. Ceruti, S., Beltrami, E., Matarrese, P., Mazzola, A., Cattabeni, F., et al. (2003) A key role for caspase-2 and caspase-3 in the apoptosis induced by 2-chloro-2-deoxy-adenosine (cladribine) and 2-chloro-adenosine in human astrocytoma cells. Mol. Pharmacol. 63, 1437−1447
  10. Chen, L., He, H. Y., Li, H. M., Zheng, J., Heng, W. J., et al. (2004) ERK1/2 and p38 pathways are required for P2Y receptor- mediated prostate cancer invasion. Cancer Lett. 215, 239−247
  11. Deng, Y., Ren, X., Yang, L., Lin, Y., and Wu, X. (2003) A JNKdependent pathway is required for TNFalpha-induced apoptosis. Cell 115, 61−70.
  12. Duriez, P. J. and Shah, G. M. (1997) Cleavage of poly (ADPribose) polymerase: a sensitive parameter to study cell death. Biochem. Cell Biol. 75, 337–349
  13. el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817−825 https://doi.org/10.1016/S0092-8674(05)80078-9
  14. Fan, Y., Wu, D., Jin, L., and Yin, Z. (2005) Human glutamylcysteine synthetase protects HEK293 cells against UV-induced cell death through inhibition of c-Jun NH2-terminal kinase. Cell Biol. Int. 29, 695−702
  15. Gendron, S., Couture, J., and Aoudjit, F. (2003) Integrin alpha2beta1 inhibits Fasmediated apoptosis in T lymphocytes by protein phosphatase 2Adependent activation of the MAPK/ERK pathway. J. Biol. Chem. 278, 48633–48643
  16. Green, D. R. and Reed, J. C. (1998) Mitochondria and Apoptosis. Science 281, 1309−1312 https://doi.org/10.1126/science.281.5381.1312
  17. Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999) BCL- 2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899−1911
  18. He, X., Wang, J., Guo, Z., Liu, Q., Chen, T., et al. (2005) Requirement for ERK activation in sinomenine-induced apoptosis of macrophages. Immunol. Lett. 98, 91–96
  19. Jiang, X. and Wang, X. (2001) Cytochrome c promotes caspase- 9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 275, 31199–31203
  20. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G. (1993) Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy- induced apoptosis. Cancer Res. 53, 3976−3985
  21. Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., et al. (2005) Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875−1888
  22. Kim, M. K., Cho, Y. H., Kim, J. M., Chun, M. W., Lee, S. K., et al. (2005) Induction of apoptosis in human leukemia cells by MCS-C2 via caspase-dependent Bid cleavage and cytochrome c release. Cancer Lett. 223, 239−247
  23. Koh, Y. H., Che, W., Higashiyama, S., Takahashi, M., Miyamoto, Y., et al. (2001) Osmotic stress induces HB-EGF gene expression via Ca(2+)/Pyk2/JNK signal cascades in rat aortic smooth muscle cells. J. Biochem. (Tokyo) 130, 351−358
  24. Kondoh, M., Tasaki, E., Takiguchi, M., Higashimoto, M., Watanabe, Y., et al. (2005) Activation of Caspase-3 in HL-60 Cells treated with pyrithione and zinc. Biol. Pharm. Bull. 28, 757−759
  25. Lee, H. C. and Wei, Y. H. (2000) Mitochondrial role in life and death of the cell. J. Biomed. Sci. 7, 2−15
  26. Li, C., Chi, S., He, N., Zhang, X., Guicherit, O., et al. (2004) IFNalpha induces Fas expression and apoptosis in hedgehog pathway activated BCC cells through inhibiting Ras-Erk signaling. Oncogene 23, 1608–1617
  27. Li, C. H., Tzeng, S. L., Cheng, Y. W., and Kang, J. J. (2005) Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21- dependent pathway. J. Biol. Chem. 280, 26193−26199
  28. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., et al. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479−489
  29. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147−157
  30. Mann, J. J. and Fraker, P. J. (2005) Zinc pyrithione induces apoptosis and increases expression of Bim. Apoptosis 10, 369−379
  31. Miranda, M. B., Xu, H., Torchia, J. A., and Johnson, D. E. (2005) Cytokine-induced myeloid differentiation is dependent on activation of the MEK/ERK pathway. Leuk. Res. 29, 1293–1306
  32. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., et al. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43
  33. Nuntharatanapong, N., Chen, K., Sinhaseni, P., and Keaney, J. F. Jr. (2005) EGF receptor-dependent JNK activation is involved in arsenite-induced p21Cip1/Waf1 upregulation and endothelial apoptosis. Am. J. Physiol. Heart Circ. Physiol. 289, 99−107
  34. Park, S. J., Yoon, W. K., Kim, H. J., Son, H. Y., Cho, S. W., et al. (2005) 3,7,8-Tetrachlorodibenzo-p-dioxin activates ERK and p38 mitogen-activated protein kinases in RAW 264.7 cells. Anti-cancer Res. 25, 2831−2836
  35. Pollack, M. and Leeuwenburgh, C. (2001) Apoptosis and Aging: Role of the Mitochondria. J. Gerontol. A Biol. Sci. Med. Sci. 56, B475−B482
  36. Rincon, M., Flavell, R. A., and Davis, R. A. (2000) The JNK and P38 MAP kinase signaling pathways in T cell-mediated immune responses. Free Radic. Biol. Med. 28, 1328−1337
  37. Robinson, M. J. and Cobb, M. H. (1997) Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9, 180–186
  38. Shelton, J. G., Steelman, L. S., White, E. R., and McCubrey, J. A. (2004) Synergy between PI3K/Akt and Raf/MEK/ERK pathways in IGF-1R mediated cell cycle progression and prevention of apoptosis in hematopoietic cells. Cell Cycle 3, 372–379
  39. Stadheim, T. A. and Kucera, G. L. (2002) c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for mitoxantrone- and anisomycin-induced apoptosis in HL-60 cells. Leuk. Res. 26, 55–65
  40. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441−446
  41. Thornberry, N. A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312−1316
  42. Tibbles, L. A. and Woodgett, J. R. (1999) The stress-activated protein kinase pathways. Cell. Mol. Life Sci. 55, 1230–1254
  43. Van, L. A., Van Kelst, S., Lippens, S., Declercq, W., Vandenabeele, P., et al. (2004) Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J. 18, 1946−1948
  44. Waskiewicz, A. J. and Cooper, J. A. (1995) Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr. Opin. Cell Biol. 7, 798–805
  45. Wedig, J. H. and Maibach, H. I. (1981) Percutaneous penetration of PTS2 in man: effect of skin color (race). J. Am. Acad. Dermatol. 5, 433−438
  46. Wolf, B. B., Schuler, M., Echeverri, F., and Green, D. R. (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase- activated DNase inactivation. J. Biol. Chem. 274, 30651− 30656
  47. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331
  48. Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R., et al. (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366, 701−704 https://doi.org/10.1038/366704a0
  49. Yang, H. L., Pan, J. X., Sun, L., and Yeung, S. C. (2003) p21 Waf-1 (Cip-1) enhances apoptosis induced by manumycin and paclitaxel in anaplastic thyroid cancer cells. J. Clin. Endocrinol. Metab. 88, 763−772
  50. Yin, Z., Ivanov, V. N., Habelhah, H., Tew, K., and Ronai, Z. (2000) GSTP-elicited protection against H2O2-induced cell death is mediated by coordinated regulation of stress kinases. Cancer Res. 60, 4053−4057
  51. Zelivianski, S., Spellman, M., Kellerman, M., Kakitelashvilli, V., Zhou, X. W., et al. (2003) ERK inhibitor PD098059 enhances docetaxel-induced apoptosis of androgen-independent human prostate cancer cells. Int. J. Cancer 107, 478–485
  52. Zou, H., Li, Y., Liu, X., and Wang, X. (1999) An APAF- 1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549− 11556