Combustion Chracteristics of Veneers Treated by Ammonium Salts

암모늄염 처리 베니어의 연소특성

  • Chung, Yeong-Jin (School of Fire & Disaster Prevention, Kangwon National University)
  • Received : 2007.01.29
  • Accepted : 2007.03.02
  • Published : 2007.04.10

Abstract

Veneer plate was painted by the treatment with ammonium salts such as ammonium chloride (AMCR), ammonium sulfate (AMSF), monoammonium phosphate (MAPP), and diammonium phosphate (DAPP) at room temperature. The physical property and flammability of painted veneer plate were investigated. In order to evaluate flammability of the treated veneer with ammonium salts, heat release rate (HRR) of the veneer was measured by a cone calorimeter according to ISO 5660-1 standard. The flammability painted veneener plate with ammonium salts was reduced compared to virgin veneer plate. The flashover possibility of veneer plates treated with these ammonium salts was examined by R. V. Petrella's classification using time to ignition and peak heat release rate. The specific gravities of veneer plates treated with only ammonium sulfate were higher than that of virgin veneer plate. Also, the veneer plates treated with ammonium salts showed lower equilibrium moisture contents over virgin veneer.

실온에서 베니어에 ammonium chloride, ammonium sulfate, monoammonium phosphate, 그리고 diammonium phosphate와 같은 암모늄염으로 도포하고, 도포된 베니어의 물리적 성질과 가연성을 조사하였다. 암모늄염로 처리된 베니어의 가연성을 평가하기 위해서, ISO 5660-1 표준에 따른 콘칼로리미터를 이용하여 베니어의 열방출율을 측정하였다. 암모늄염으로 도포된 베니어판은 미처리된 순수 베니어판에 비하여 가연성을 감소시켰다. 도포된 베니어의 flashover 가능성은 R. V. Petrella에 의한 분류 방법에 따라서 착화시간과 최대열방출율을 이용하여 시험하였다. 비중측정 결과 ammonium sulfate로 처리한 베니어의 비중만 미처리 베니어보다 더 높았다. 또한 암모늄염으로 도포된 베니어는 무처리된 순수 베니어보다 낮은 평형함수율을 보였다.

Keywords

References

  1. E. Baysal, M. Altinok, M. Colak, S. K. Ozaki, and H. Toker, Bioresour. Technol., 98, 1101 (2007) https://doi.org/10.1016/j.biortech.2006.04.023
  2. O. Grexa, E. Horvathova, O. B. Inova, and P. Lehocky, Polym. Degrad. Stab., 64, 529 (1999)
  3. 건축법 제43조 시행령 제61조, 건축물의 내부마감재료 (2004)
  4. 소방기본법 제12조 시행령 제20조, 방염대상물품 및 방염성능기 준 (2005)
  5. H. J. Park, K. H. Oh, E. S. Kim, and H. Kim, T. of Korean Institute of Fire Sci. Eng., 19, 105 (2005)
  6. T. S. Mcknight, The hygroscopicity of wood treated with fire-retarding compounds, Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962)
  7. S. M. Draganov and F. T. Winters, Jr., Fore. Prod. J., 15, 463 (1965)
  8. I. S. Goldstein and W. A. Dreher, A., Froe. Prod. J., 11, 235 (1961)
  9. Kozlowski R, Hewig M, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Pozman, Poland, Institute of Natural Fibres, 1995
  10. E. Baysal, A. Sonmez, M. Cplok, and H. Toker, Bioresour. Technol., 97, 2271 (2006) https://doi.org/10.1016/j.biortech.2005.10.044
  11. Y. Zhao, K. Wang, F. Zhu, P. Xue, and M. Jia, Polym. Degrad. Stab., 91, 832 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  12. http://www.cischem.com/chemical-report/cr-71/cr71-50.asp
  13. M. L. Hardy, Polym. Degrad. Stab., 64, 545 (1999)
  14. Y. Tanaka, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988)
  15. ISO 5660-1, Genever (2002)
  16. R. V. Petrella, J. of Fire Sciences, 12, 14 (1994)