DOI QR코드

DOI QR Code

Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment

  • Sung, Ha Guyn (School of Agricultural Biotechnology, College of Agriculture and Life Sciences Seoul National University) ;
  • Kobayashi, Yasuo (Graduate School of Agriculture, Hokkaido University) ;
  • Chang, Jongsoo (Department of Agricultural Science, Korea National Open University) ;
  • Ha, Ahnul (School of Agricultural Biotechnology, College of Agriculture and Life Sciences Seoul National University) ;
  • Hwang, Il Hwan (School of Agricultural Biotechnology, College of Agriculture and Life Sciences Seoul National University) ;
  • Ha, J.K. (School of Agricultural Biotechnology, College of Agriculture and Life Sciences Seoul National University)
  • Received : 2006.08.07
  • Accepted : 2006.10.11
  • Published : 2007.02.01

Abstract

In vitro rumen incubation studies were conducted to determine effects of initial pH on bacterial attachment and fiber digestion. Ruminal fluid pH was adjusted to 5.7, 6.2 and 6.7, and three major fibrolytic bacteria attached to rice straw in the mixed culture were quantified with real-time PCR. The numbers of attached and unattached Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminocococcus albus were lower (p<0.05) at initial pH of 5.7 without significant difference between those at higher initial pH. Lowering incubation media pH to 5.7 also increased bacterial numbers detached from substrate regardless of bacterial species. Dry matter digestibility, gas accumulation and total VFA production were pH-dependent. Unlike bacterial attachment, maintaining an initial pH of 6.7 increased digestion over initial pH of 6.2. After 48 h in vitro rumen fermentation, average increases in DM digestion, gas accumulation, and total VFA production at initial pH of 6.2 and 6.7 were 2.8 and 4.4, 2.0 and 3.0, and 1.2 and 1.6 times those at initial pH of 5.7, respectively. The lag time to reach above 2% DM digestibility at low initial pH was taken more times (8 h) than at high and middle initial pH (4 h). Current data clearly indicate that ruminal pH is one of the important determinants of fiber digestion, which is modulated via the effect on bacterial attachment to fiber substrates.

Keywords

References

  1. Akin, D. E. and F. E. Barton. 1983. Rumen microbial attachment and degradation of plant cell walls. Fed. Proc. 42:114-121.
  2. Bae, H. D., T. A. McAllister, E. G. Kokko, F. L. Leggett, L. J. Yamke, K. D. Jakober, J. K. Ha, H. T. Shin and K. J. Cheng. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65:165-181. https://doi.org/10.1016/S0377-8401(96)01093-0
  3. Bhat, S., R. J. Wallace and E. R. Orskov. 1990. Adhesion of cellulolytic ruminal bacteria to barley straw. Appl. Environ. Microbiol. 56:2698-2703.
  4. Bonhomme, A. 1990. Rumen ciliates: Their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 30:203-266. https://doi.org/10.1016/0377-8401(90)90016-2
  5. Cheng, K. -J., J. P. Fay, R. E. Howarth and J. W. Costerton. 1980. Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl. Environ. Microbiol. 40:613-625.
  6. Cheng, K. -J., C. S. Stewart, D. Dinsdale and J. W. Costerton. 1984. Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120. https://doi.org/10.1016/0377-8401(84)90002-6
  7. Craig, W. M., G. A. Broderick and D. B. Ricker. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117:56-64. https://doi.org/10.1093/jn/117.1.56
  8. Forsberg, C. W. and R. Lam. 1977. Use of adenosine-5- triphosphate as an indicator of the microbial biomass in rumen contents. Appl. Environ. Microbiol. 33:528-534.
  9. Gong, J. and C. W. Forsberg. 1989. Factors affecting adhesion of Fibrobacter succinogenes S85 and adherence defective mutants to cellulose. Appl. Environ. Microbiol. 55:3039-3044.
  10. Grant, R. J. and S. J. Weidner. 1992. Digestion kinetics of fiber: Influence of in vitro buffer pH varied within observed physiological range. J. Dairy Sci. 75:1060-1068.
  11. Hu, Z. -H., H. -Q. Tu and R. -F. Zhu. 2005. Influence of particle size and pH on anaerobic degradation of cellulose by rumen microbes. Int. Biodeter. Biodegr. 55:233-238. https://doi.org/10.1016/j.ibiod.2005.02.002
  12. Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontasol, M. A. Wattiaux and P. Rowlison. 2006. Effect of leve;s of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian-Aust. J. Anim. Sci. 19:368-375. https://doi.org/10.5713/ajas.2006.368
  13. Kobayashi, Y., S. Koike, H. Taguchi, H. Itabashi, Dong K. Kam and J. K. Ha. 2004. Recent advances in gut microbiology and their possible contribution to animal health and production-Review. Asian-Aust. J. Anim. Sci. 17:877-884. https://doi.org/10.5713/ajas.2004.877
  14. Koike, S. and Y. Kobayshi. 2001. Development and use of competitive PCR asays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEM Microbiol. Letters. 204:361- 366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  15. Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86:1429- 1435. https://doi.org/10.3168/jds.S0022-0302(03)73726-6
  16. Latham, M. J., B. E. Brooker, G. L. Petipher and P. J. Harris. 1978. Ruminoccocus flavefaciens cell coat and adhesion to cotton cellulose and cell leaves of perennial ryegrass. Appl. Environ. Microbiol. 35:156-165.
  17. McAllister, T. A., H. D. Bae, G. A. Jines and K. -J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-30018. https://doi.org/10.2527/1994.72113004x
  18. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109. https://doi.org/10.1042/bj0430099
  19. Minato, H., M. Mitsumori and K. J. Cheng. 1993. Attachment of microorganisms to solid substrates in the rumen. pp. 139-145 in Proc. Mie bioforum on Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Uni Publisher, Tokyo.
  20. Miron, J. and C. W. Forsberg. 1998. Features of Fibrobacter intestinalis DR7 mutant which is impaired with its ability to adhere to cellulose. Anaerobe 4:35-43. https://doi.org/10.1006/anae.1997.0132
  21. Miron, J., D. Ben-Ghedalia and M. Morrison. 2001. Invited Review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2
  22. Morris, E. J. 1988. Charateristics of the adhesion of Ruminococcus albus to cellulose. FEMS Microbiol. Letters. 51:113-117. https://doi.org/10.1111/j.1574-6968.1988.tb02980.x
  23. Morris, E. J. and O. J. Cole. 1987. Relationships between cellulolytic activity and adhesion to cellulose in Ruminococus albus. J. Gen. Microbiol. 133:1023-1032.
  24. Mould, F. L. and E. R. Orskov. 1983. Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. Anim. Feed Sci. Technol. 10:1-14. https://doi.org/10.1016/0377-8401(83)90002-0
  25. Mould, F. L., E. R. Orskov and S. O. Mann 1984. Associative effects of mixed feeds. I Effects of type and level of supplementation and the influence of the rumen pH on cellulolysis in vivo and dry matter degradation of various roughages. Anim. Feed Sci. Technol. 10:15-20. https://doi.org/10.1016/0377-8401(83)90003-2
  26. Mourino, F., R. Akkarawongsa and P. J. Weimer. 2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J. Dairy Sci. 84:848-859. https://doi.org/10.3168/jds.S0022-0302(01)74543-2
  27. Pan, J., S. Koike, T. Suzuki, K. Ueda, Y. Kobayashi, K. Tanaka and Okubo. 2003. Effect of mastication on degradation of orchardgrass hay stem by rumen microbes: fibrolytic enzyme activities and microbial attachment. Anim. Feed Sci. Technol. 106:69-79. https://doi.org/10.1016/S0377-8401(03)00039-7
  28. Pell, A. N. and P. Schofield. 1993. Microbial adhesion and degradation of plant cell walls. pp. 397-423 in Forage Cell Wall Structure and Digestibility. ASA-CSSA-SSSA, Madison, WI.
  29. Purdy, K. J., T. M. Embley, S. Takii and D. B. Nedwell. 1996. Rapid extraction of DNA and RNA from sediments by novel hydroxyapatite spin-colum method. Appl. Environ. Microbial. 62:3905-3970.
  30. Roger, V. R., G. Fonty, S. Komisarczuk-Bondy and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose avicel of the rumen bacteria Ruminococcus flavefaciens and Fibrobactor succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081-3087.
  31. Russell, J. B. and D. B. Wilson. 1996. Why are cellulolytic bacteria unable to digest at low pH? J. Dairy Sci. 79:1503-1509. https://doi.org/10.3168/jds.S0022-0302(96)76510-4
  32. Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Sci. 292:1119-1122. https://doi.org/10.1126/science.1058830
  33. SAS (Statistical Analysis System Institute). 1989. SAS/STATTM User's Guide: Statistics, Version 6, 4th Edition. Vol. 2, Cary, NC.
  34. Slyter, L. L. 1986. The ability of pH-selected mixed ruminal microbial population to digest fiber at various pHs. Appl. Environ. Microbiol. 52:390-391.
  35. Srinivas, B. and U. Krishnamoorthy. 2005. Influence of diet induced changes in rumen microbial characteristics on gas production kinetics of straw substrates in vitro. Asian-Aust. J. Anim. Sci. 18:990-996. https://doi.org/10.5713/ajas.2005.990
  36. Stewart, C. S., S. H. Duncan and H. J. Flint. 1990. The properties of forms of Ruminococcus flavefaciens which differ in their ability to degrade cotton cellulose. FEMS Microbiol. Lett. 72:47-50. https://doi.org/10.1111/j.1574-6968.1990.tb03859.x
  37. Sung, H. G., D. M. Min, D. K. Kim, D. Y. Li, H. J. Kim, S. D. Upadhaya and J. K. Ha. 2006. Influence of transgenic corn on the in vitro rumen microbial fermentation. Asian-Aust. J. Anim. Sci. 19:1761-1768. https://doi.org/10.5713/ajas.2006.1761
  38. Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  39. Weimer, P. J. 1996. Why don't ruminal bacterial digest cellulose faster? J. Dairy Sci. 79:1496-1502. https://doi.org/10.3168/jds.S0022-0302(96)76509-8

Cited by

  1. Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw vol.26, pp.10, 2013, https://doi.org/10.5713/ajas.2013.13220
  2. Use of Real-Time PCR Technique in Studying Rumen Cellulolytic Bacteria Population as Affected by Level of Roughage in Swamp Buffalo vol.58, pp.4, 2009, https://doi.org/10.1007/s00284-008-9322-6
  3. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study vol.39, pp.4, 2012, https://doi.org/10.1007/s11033-011-1278-0
  4. Ruminal fermentation and microbial ecology of buffaloes and cattle fed the same diet vol.83, pp.12, 2012, https://doi.org/10.1111/j.1740-0929.2012.01031.x
  5. Molecular analysis of the bacterial microbiome in the forestomach fluid from the dromedary camel (Camelus dromedarius) vol.40, pp.4, 2013, https://doi.org/10.1007/s11033-012-2411-4
  6. Dry chemical processing and ensiling of rice straw to improve its quality for use as ruminant feed vol.45, pp.5, 2013, https://doi.org/10.1007/s11250-012-0349-0
  7. Effects of replacing barley grain with graded levels of wheat bran on rumen fermentation, voluntary intake and nutrient digestion in beef cattle vol.94, pp.1, 2014, https://doi.org/10.4141/cjas2013-139
  8. Characterization of the cellulolytic bacteria communities along the gastrointestinal tract of Chinese Mongolian sheep by using PCR-DGGE and real-time PCR analysis vol.31, pp.7, 2015, https://doi.org/10.1007/s11274-015-1860-z
  9. An Investigation into Rumen Fungal and Protozoal Diversity in Three Rumen Fractions, during High-Fiber or Grain-Induced Sub-Acute Ruminal Acidosis Conditions, with or without Active Dry Yeast Supplementation vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01943
  10. Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows vol.101, pp.1, 2018, https://doi.org/10.3168/jds.2016-12514
  11. Volatile fatty acids and methane production from browse species of Algerian arid and semi-arid areas vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2016.1257432
  12. Comparative effects of grain source on digestion characteristics of finishing diets for feedlot cattle: steam-flaked corn, barley, wheat, and oats vol.98, pp.4, 2018, https://doi.org/10.1139/cjas-2018-0018
  13. Rumen-buffering capacity using dietary sources and in vitro gas fermentation vol.58, pp.5, 2018, https://doi.org/10.1071/AN15466
  14. Expression of a Recombinant Lentinula edodes Xylanase by Pichia pastoris and Its Effects on Ruminal Fermentation and Microbial Community in in vitro Incubation of Agricultural Straws vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02944
  15. Improving ruminal fermentation and nutrient digestibility in dairy steers by banana flower powder-pellet supplementation vol.58, pp.7, 2018, https://doi.org/10.1071/AN16350
  16. Effects of Tween 80 Pretreatment on Dry Matter Disappearance of Rice Straw and Cellulolytic Bacterial Adhesion vol.20, pp.9, 2007, https://doi.org/10.5713/ajas.2007.1397
  17. 비이온성 계면활성제 Tween 80의 첨가가 반추위 혼합 미생물에 의한 in vitro 가스발생량, 건물소화율, 효소활력 및 미생물 성장율에 미치는 영향 vol.17, pp.12, 2007, https://doi.org/10.5352/jls.2007.17.12.1660
  18. Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion - Review vol.53, pp.3, 2008, https://doi.org/10.1007/s12223-008-0024-z
  19. Supplementing Maize or Soybean Hulls to Cattle Fed Rice Straw:Intake, Apparent Digestion, In situ Disappearance and Ruminal Dynamics vol.21, pp.6, 2008, https://doi.org/10.5713/ajas.2008.70518
  20. Fibrolytic Rumen Bacteria: Their Ecology and Functions vol.22, pp.1, 2007, https://doi.org/10.5713/ajas.2009.r.01
  21. Effects of dietary Astragalus polysaccharide and Astragalus membranaceus root supplementation on growth performance, rumen fermentation, immune responses, and antioxidant status of lambs vol.174, pp.1, 2007, https://doi.org/10.1016/j.anifeedsci.2012.02.013
  22. Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content vol.153, pp.8, 2015, https://doi.org/10.1017/s0021859615000775
  23. Evaluation of Yeast Supplementation with Urea-Molasses in Rice Straw-Based Diets on in vitro Ruminal Fermentation vol.14, pp.12, 2015, https://doi.org/10.3923/pjn.2015.988.993
  24. Profiling of Rumen Fermentation and Microbial Population Changes in Goats Fed with Napier Grass Supplemented with Whole Corn Plant Silage vol.10, pp.1, 2007, https://doi.org/10.3923/ajas.2016.1.14
  25. Starch in ruminant diets: a review vol.29, pp.2, 2016, https://doi.org/10.17533/udea.rccp.v29n2a01
  26. Effects of xylanase supplementation on feed intake, digestibility and ruminal fermentation in Rambouillet sheep vol.154, pp.6, 2007, https://doi.org/10.1017/s0021859616000216
  27. Effect of Feed with Different Energy-protein Ratios on Parameters of Sheep Ruminal Fermentation vol.15, pp.12, 2007, https://doi.org/10.3923/pjn.2016.1055.1060
  28. Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics vol.161, pp.None, 2018, https://doi.org/10.1016/j.smallrumres.2018.02.011
  29. Effect of banana flower powder on rumen fermentation, synthesis of microbial protein and nutrient digestibility in swamp buffaloes vol.59, pp.9, 2019, https://doi.org/10.1071/an18063
  30. Reclamation of Astragalus By-Product through Dietary Inclusion in Ruminant Diets: Effects on Growth Performance, Nutrient Digestibility, Rumen Fermentation, Blood Biochemical Parameters, and Humoral I vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8530961
  31. Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet1 vol.97, pp.8, 2007, https://doi.org/10.1093/jas/skz216
  32. Comparative Effects of Stovers of Four Varieties of Common Vetch on Growth Performance, Ruminal Fermentation, and Nutrient Digestibility of Growing Lambs vol.10, pp.4, 2020, https://doi.org/10.3390/ani10040596
  33. Cistanche deserticola Addition Improves Growth, Digestibility, and Metabolism of Sheep Fed on Fresh Forage from Alfalfa/Tall Fescue Pasture vol.10, pp.4, 2007, https://doi.org/10.3390/ani10040668
  34. Feed utilization and lactational performance of Barki sheep fed diets containing thyme or celery vol.192, pp.None, 2020, https://doi.org/10.1016/j.smallrumres.2020.106249
  35. The Effect of Replacing Wildrye Hay with Mulberry Leaves on the Growth Performance, Blood Metabolites, and Carcass Characteristics of Sheep vol.10, pp.11, 2007, https://doi.org/10.3390/ani10112018
  36. Astragalus membranaceus root supplementation improves average daily gain, rumen fermentation, serum immunity and antioxidant indices of Tibetan sheep vol.15, pp.1, 2007, https://doi.org/10.1016/j.animal.2020.100061
  37. Astragalus root extract improved average daily gain, immunity, antioxidant status and ruminal microbiota of early weaned yak calves vol.101, pp.1, 2007, https://doi.org/10.1002/jsfa.10617
  38. Changes in the Fermentation and Bacterial Community by Artificial Saliva pH in RUSITEC System vol.8, pp.None, 2007, https://doi.org/10.3389/fnut.2021.760316
  39. Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production vol.342, pp.None, 2007, https://doi.org/10.1016/j.biortech.2021.126004
  40. Metatranscriptomic analyses reveal ruminal pH regulates fiber degradation and fermentation by shifting the microbial community and gene expression of carbohydrate-active enzymes vol.3, pp.1, 2007, https://doi.org/10.1186/s42523-021-00092-6