Improved yield in molecular electronic devices using amino-style molecules

Koo, Ja-Ryong;Pyo, Sang-Woo;Kim, Jun-Ho;Gong, Doo-Won;Kim, So-Young;Seo, Ji-Hoon;Kim, Young-Kwan

  • Published : 20070500

Abstract

Molecular electronic devices were fabricated with amino-style derivatives as redox-active components. These molecules are amphi-philic to allow monolayer formation by the LangmuirBlodgett (LB) method, and this LB monolayer is inserted between two metal elec-trodes. On measuring the currentvoltage (IV) characteristics, it was found that the Al/amino style LB monolayer/Al devices showremarkable hysteresis and switching behavior, so that they can be used as memory devices at ambient conditions, when an aluminumoxide layer exists on the bottom electrode. From the results ofIV measurements, we acquired values of the switching voltage and somearea of the device and by inserting a Ti protecting layer between the top metal electrode and the amino style LB monolayer.

Keywords

References

  1. V. Shrotriya, Y. Yang, J. Appl. Phys. 97 (2005) 054504 https://doi.org/10.1063/1.1857053
  2. J. Zhang, H. Wang, X. Yan, J. Wang, J. Shi, D. Yan, Adv. Mater. 17 (2005) 1191 https://doi.org/10.1002/adma.200401113
  3. X. Crispin, Solar Energy Mater. Solar Cells 83 (2004) 147 https://doi.org/10.1016/j.solmat.2004.02.022
  4. T. Oyamada, H. Tanaka, H. Sasabe, C. Adachi, Appl. Phys. Lett. 83 (2003) 1252 https://doi.org/10.1063/1.1600848
  5. L. Ma, S. Pyo, J. Ouyang, Q. Xu, Y. Yang, Appl. Phys. Lett. 82 (2003) 1419 https://doi.org/10.1063/1.1556555
  6. D.R. Stewart, D.A.A. Ohlberg, P.A. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, NanoLetters 4 (2004) 133 https://doi.org/10.1021/nl034795u
  7. J. Chen, W. Wang, M.A. Reed, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 77 (2000) 1224 https://doi.org/10.1063/1.1289650
  8. J.R. Koo, H.S. Lee, Y.K. Ha, Y.H. Choi, Y.K. Kim, Thin Solid Films 438-439 (2003) 123
  9. J.R. Koo, S.W. Pyo, J.H. Kim, H.K. Lee, Y.K. Kim, Jpn. J. Appl. Phys. 44 (2005) 566 https://doi.org/10.1143/JJAP.44.566
  10. R.M. Metzger, J.W. Baldwin, W.J. Shumate, I.R. Peterson, P. Mani, G.J. Mankey, T. Morris, G. Szulczewski, S. Bosi, M. Prato, A. Comito, Y. Rubin, J. Phys. Chem. B 107 (2003) 1021 https://doi.org/10.1021/jp022101k
  11. J. He, L. Ma, J. Wu, Y. Yang, J. Appl. Phys. 97 (2005) 064507 https://doi.org/10.1063/1.1866496
  12. C.N. Lau, D.R. Stewart, R.S. Williams, M. Bockrath, NanoLetters 4 (2004) 569 https://doi.org/10.1021/nl035117a
  13. P.J. Kuekes, D.R. Stewart, R.S. Williams, J. Appl. Phys. 97 (2005) 034301 https://doi.org/10.1063/1.1823026
  14. G. Snider, P. Kuekes, R.S. Williams, Nanotechnology 15 (2004) 881 https://doi.org/10.1088/0957-4484/15/8/003
  15. D.I. Gittins, D. Bethell, D.J. Schiffrin, R.J. Nichols, Nature 408 (2000) 67 https://doi.org/10.1038/35040518
  16. G.K. Ramachandran, T.J. Hopson, A.M. Rawlett, L.A. Nagahara, A. Primak, S.M. Lindsay, Science 300 (2003) 1413 https://doi.org/10.1126/science.1083825
  17. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 78 (2001) 3735 https://doi.org/10.1063/1.1377042
  18. A. Honciue, A. Jaiswal, A. Gong, K. Ashworth, C.W. Spangler, I.R. Peterson, L.R. Dalton, R.M. Metzger, J. Phys. Chem. B 109 (2005) 857 https://doi.org/10.1021/jp0454624
  19. K. Konstadinidis, P. Zhang, R.L. Opila, D.L. Allara, Surf. Sci. 338 (1995) 300 https://doi.org/10.1016/0039-6028(95)80048-4
  20. J.R. Koo, S.W. Pyo, J.H. Kim, S.Y. Jung, S.S. Yoon, T.W. Kim, Y.H. Choi, Y.K. Kim, Synth. Metals 156 (2006) 86 https://doi.org/10.1016/j.synthmet.2005.11.002
  21. A.V. Walker, T.B. Tighe, J. Stapleton, B.C. Haynie, S. Upilli, D.L. Allara, N. Winograd, Appl. Phys. Lett. 84 (2004) 4008 https://doi.org/10.1063/1.1748844