Ferromagnetic Properties of Ni-Doped Rutile $TiO_{2-\delta}$

Park, Young-Ran;Choi, Seung-li;Lee, Jung-Han;Kim, Kwang-Joo;Kim, Chul-Sung

  • Published : 20070300

Abstract

Ni-doped rutile TiO$_{2-\delta}$ thin films grown by using the sol-gel method exhibited ferromagnetic and semiconducting properties at room temperature. The ferromagnetic strength of the TiO$_{2-\delta}$:Ni films was found to vary with Ni doping ($x$). The Ni-doped films had $p$-type electrical conductivity for small $x$ ($\le$5 at.\%) with the hole density increasing with $x$ while the undoped ones had $n$-type conductivity. Formation of Ni clusters was detected for large $x$ ($\ge$6 at.\%) by using X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and Hall effect measurements. The Ni ions in TiO$_{2-\delta}$:Ni were found to have valences of +2 and +3 by using XPS, with the latter having a larger density. The room-temperature ferromagnetism for $x$ $\le$ 5 at.\% is not attributable to mobile holes but to magnetic polarons formed around electrons trapped in oxygen vacancies.

Keywords

References

  1. S. K. Kamila and S. Basu, Bull. Mater. Sci. 25, 541 (2002)
  2. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature (London) 402, 790 (1999)
  3. I. Zutic, J. Fabian and S. Das Sarma, Phys. Rev. B 64, 121201 (2001)
  4. Y. S. Didosyan, H. Hauser, G. A. Reider and W. Toriser, J. Appl. Phys. 95, 7339 (2004) https://doi.org/10.1063/1.1669350
  5. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Science 291, 854 (2001)
  6. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999)
  7. S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simson, N. D. Browning, S. D. Sarma, H. D. Drew, R. L. Greene and T. Venkatesan, Phys. Rev. Lett. 91, 077205 (2003) https://doi.org/10.1103/PhysRevLett.91.077205
  8. K. J. Kim, Y. R. Park and J. Y. Park, J. Korean Phys. Soc. 48, 1422 (2006)
  9. S. R. Jiang, P. X. Yan, B. X. Feng, X. M. Cai and J. Wang, Mater. Chem. Phys. 77, 384 (2002)
  10. H. D. Kim, S. J. Oh, I. S. Yang and N. H. Hur, Physica C 253, 351 (1995)
  11. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976) https://doi.org/10.1107/S0567739476002015
  12. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Co., Eden Prairie, Minnesota, 1992), p. 85
  13. N. H. Hong, J. Sakai and W. Prellier, J. Magn. Magn. Mater. 281, 347 (2004) https://doi.org/10.1016/j.jmmm.2004.04.125
  14. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000)
  15. E. Yagi, R. R. Hasiguti and M. Aono, Phys. Rev. B 54, 7945 (1996)
  16. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid and F. Levy, J. Appl. Phys. 75, 2042 (1994) https://doi.org/10.1063/1.356425
  17. J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nature Mater. 4, 173 (2005) https://doi.org/10.1038/nmat1310
  18. M. S. Park, S. K. Kwon and B. I. Min, Phys. Rev. B 65, 61201 (2002)
  19. N. H. Hong, J. Sakai and A. Hassini, Appl. Phys. Lett. 84, 2602 (2004) https://doi.org/10.1063/1.1703848