Regulation of Transient Receptor Potential Melastatin 7 (TRPM7) Currents by Mitochondria

  • Kim, Byung Joo (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Jeon, Ju-Hong (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Seon Jeong (Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University) ;
  • So, Insuk (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Ki Whan (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine)
  • Received : 2006.08.30
  • Accepted : 2007.03.16
  • Published : 2007.06.30

Abstract

Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of $F_1/F_O$-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial $Ca^{2+}$ uniporter, and ruthenium red, an inhibitor of the mitochondrial $Ca^{2+}$ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the $F_1/F_O$-ATP synthase of mitochondria are important in regulating TRPM7 channels.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Aarts, M., Iihara, K., Wei, W. L., Xiong, Z. G., Arundine, M., et al. (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877
  2. Allen, R. D., Schroeder, C. C., and Fok, A. K. (1989) An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J. Cell. Biol. 108, 2233–2240
  3. Aronis, A., Komarnitsky, R., Shilo, S., and Tirosh, O. (2002) Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production. Antioxid. Redox. Signal. 4, 647–654
  4. Berry, E. A., Guergova-Kuras, M., Huang, L. S., and Crofts, A. R. (2000) Structure and function of cytochrome bc complexes. Annu. Rev. Biochem. 69, 1005-1075 https://doi.org/10.1146/annurev.biochem.69.1.1005
  5. Boschek, B. C. (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly. Musca domestica, Z. Zellforsch. 118, 369-409 https://doi.org/10.1007/BF00331193
  6. Bragadin, M., Pozzan, T., and Azzone, G. F. (1979) Kinetics of $Ca^{2+}$ carrier in rat liver mitochondria. Biochemistry 18, 5972-5978 https://doi.org/10.1021/bi00593a033
  7. Cheranov, S. Y. and Jaggar, J. H. (2004) Mitochondrial modulation of $Ca^{2+}$ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J. Physiol. 556, 755-771 https://doi.org/10.1113/jphysiol.2003.059568
  8. Chubanov, V., Waldegger, S., Mederosy Schnitzler, M., Vitzthum, H., Sassen, M. C., et al. (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl. Acad. Sci. USA 101, 2894- 2899
  9. Clapham, D. E. (2003) TRP channels as cellular sensors. Nature 426, 517-524 https://doi.org/10.1038/nature02196
  10. Collins, A. and Larson, M. (2005) Regulation of inward rectifier $K^{+}$ channels by shift of intracellular pH dependence. J. Cell. Physiol. 202, 76-86 https://doi.org/10.1002/jcp.20093
  11. David, G., Barrett, J. N., and Barrett, E. F. (1998) Evidence that mitochondria buffer physiological $Ca^{2+}$ loads in lizard motor nerve terminals. J. Physiol. 509, 59-65 https://doi.org/10.1111/j.1469-7793.1998.059bo.x
  12. Demeuse, P., Penner, R., and Fleig, A. (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J. Gen. Physiol. 127, 421-434 https://doi.org/10.1085/jgp.200509410
  13. Duchen, M. R. (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signaling and cell death. J. Physiol. 516, 1-17 https://doi.org/10.1111/j.1469-7793.1999.001aa.x
  14. Farkas, D. L., Wei, M. D., Febbroriello, P., Carson, J. H., and Loew, L. W. (1989) Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys. J. 56, 1053-1069 https://doi.org/10.1016/S0006-3495(89)82754-7
  15. Fleig, A. and Penner, R. (2004) Emerging roles of TRPM channels. Novartis Found Symp 258, 248-258
  16. Friedrich, T. and Bottcher, B. (2004) The gross structure of the respiratory Complex I: a Lego system. Biochim. Biophys. Acta. 1608, 1-9 https://doi.org/10.1016/j.bbabio.2003.10.002
  17. Guerrieri, F., Lorusso, M., Pansini, A., Ferrarese, V., and Papa, S. (1976) On the mechanism of action of oligomycin and acidic uncouplers on proton translocation and energy transfer in 'sonic' submitochondrial particles. J. Bioenerg. Biomembr. 8, 131-142 https://doi.org/10.1007/BF00748959
  18. Gunter, K. K. and Gunter, T. E. (1994) Transport of calcium by mitochondria. J. Bioenerg. Biomem. 26, 471-485 https://doi.org/10.1007/BF00762732
  19. Hanano, T., Hara, Y., Shi, J., Morita, H., Umebayashi, C., et al. (2004) Involvement of TRPM7 in cell growth as a spontaneously activated $Ca^{2+}$ entry pathway in human retinoblastoma cells. J. Pharmacol. Sci. 95, 403-419 https://doi.org/10.1254/jphs.FP0040273
  20. Harteneck, C., Plant, T. D., and Schultz, G. (2000) From worm to man: three subfamilies of TRP channels. Trends. Neurosci. 23, 159-166 https://doi.org/10.1016/S0166-2236(99)01532-5
  21. Hermosura, M. C., Monteilh-Zoller, M. K., Scharenberg, A. M., Penner, R., and Fleig, A. (2002) Dissociation of the storeoperated calcium current I (CRAC) and the Mg-nucleotideregulated metal ion current MagNuM. J. Physiol. 539, 445-458 https://doi.org/10.1113/jphysiol.2001.013361
  22. Heytler, P. G. and Prichard, W. W. (1962) A new class of uncoupling agents-carbonyl cyanide phenylhydrazones. Biochem. Biophys. Res. Commun. 7, 272-275 https://doi.org/10.1016/0006-291X(62)90189-4
  23. Jeong, S. Y., Shin, S. Y., Kim, H., Bae, C., Uhm, D. Y., et al. (2006) Regulation of magnesium-inhibited cation current by actin cytoskeleton rearrangement. Biochem. Biophys. Res. Commun. 339, 810-815 https://doi.org/10.1016/j.bbrc.2005.11.093
  24. Kang, Y. K. and Park, M. K. (2005) Endoplasmic reticulum $Ca^{2+}$ store: regulation of $Ca^{2+}$ release and reuptake by intracellular and extracellular $Ca^{2+}$ in pancreatic acinar cells. Mol. Cells 19, 268-278
  25. Kim, B. J., Lim, H. H., Yang, D. K., Jun, J. Y., Chang, I. Y., et al. (2005) Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129, 1504-1517 https://doi.org/10.1053/j.gastro.2005.08.016
  26. Kozak, J. A., Kerschbaum, H. H., and Cahalan, M. D. (2002) Distinct properties of CRAC and MIC channels in RBL cells. J. Gen. Physiol. 120, 221-235 https://doi.org/10.1085/jgp.20028601
  27. Langeslag, M., Clark, K., Moolenaar, W. H., Van Leeuween, F. N., and Jalink, K. (2007) Activation of TRPM7 channels by PLC-coupled receptor agonists. J. Biol. Chem. 282, 232-239 https://doi.org/10.1074/jbc.M605300200
  28. Luo, Y., Bond, J. D., and Ingram, V. M. (1997) Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc. Natl. Acad. Sci. USA 94, 9705-9710
  29. Matlib, M. A., Zhou, Z., Knight, S., Ahmed, S., Choi, K. M., et al. (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits $Ca^{2+}$ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J. Biol. Chem. 273, 10223-10231 https://doi.org/10.1074/jbc.273.17.10223
  30. Minke, B. and Agam, K. (2003) TRP gating is linked to the metabolic state and maintenance of the Drosophila photoreceptor cells. Cell Calcium 33, 395-408 https://doi.org/10.1016/S0143-4160(03)00052-6
  31. Monteilh-Zoller, M. K., Hermosura, M. C., Nadler, M. J., Scharenberg, A. M., Penner, R., et al. (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J. Gen. Physiol. 121, 49-60 https://doi.org/10.1085/jgp.20028740
  32. Montell, C. (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE RE1.
  33. Montero, M., Alonso, M. T., Carnicero, E., Cuchillo-Ibanez, I., Albillos, A., et al. (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial $Ca^{2+}$ transients that modulate secretion. Nat. Cell. Biol. 2, 57-61 https://doi.org/10.1038/35000001
  34. Montero, M., Lobaton, C. D., Hernandez-Sanmiguel, E., Santodomingo, J., Vay, L., et al. (2004) Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochem. J. 384, 19-24 https://doi.org/10.1042/BJ20040990
  35. Nadler, M. J., Hermosura, M. C., Inabe, K., Perraud, A. L., Zhu, Q., et al. (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590-595 https://doi.org/10.1038/35079092
  36. Oancea, E., Wolfe, J. T., and Clapham, D. E. (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ. Res. 98, 245-253 https://doi.org/10.1161/01.RES.0000200179.29375.cc
  37. Park, K. S., Jo, I., Pak, K., Bae, S. W., Rhim, H., et al. (2002) FCCP depolarizes plasma membrane potential by activating proton and $Na^+$ currents in bovine aortic endothelial cells. Pflugers Arch. 443, 344-352 https://doi.org/10.1007/s004240100703
  38. Prakriya, M. and Lewis, R. S. (2002) Separation and characterization of currents through store-operated CRAC channels and $Mg^{2+}$-inhibited cation (MIC) channels. J. Gen. Physiol. 119, 487-507 https://doi.org/10.1085/jgp.20028551
  39. Raha, S. and Robinson, B. H. (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502-508 https://doi.org/10.1016/S0968-0004(00)01674-1
  40. Runnels, L. W., Yue, L., and Clapham, D. E. (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043-1047 https://doi.org/10.1126/science.1058519
  41. Runnels, L. W., Yue, L., and Clapham, D. E. (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat. Cell. Biol. 4, 329–336.
  42. Rutter, G. A. and Rizzuto, R. (2000) Regulation of mitochondrial metabolism by ER $Ca^{2+}$ release: an intimate connection. Trends. Biochem. Sci. 25, 215–221 https://doi.org/10.1016/S0968-0004(00)01587-5
  43. Schlingmann, K. P., Weber, S., Peters, M., Niemann Nejsum, L., Vitzthum, H., et al. (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170
  44. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, et al. (2003) Regulation of vertebrate cellular $Mg^{2+}$ homeostasis by TRPM7. Cell 114, 191-200 https://doi.org/10.1016/S0092-8674(03)00556-7
  45. Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, et al. (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc. Natl. Acad. Sci. U S A 101, 6009–6014.
  46. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, et al. (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31, 171–174.