Influence of the 1,2-Unit Content of SBR and Filler Systems on Thermal Aging Behaviors of SBR Composites

Choi, Sung-Seen;Kim, Jong-Chul

  • Published : 20071100

Abstract

Thermal aging behaviors of SBR vulcanizates reinforced with silica or carbon black was studied in terms of the crosslink density change. Three types of SBR with the different 1,2-unit contents of 18, 25, and 60wt% were used and influence of the 1,2-unit content of SBR on the thermal aging behaviors was investigated. Thermal aging experiments were carried out in a convection oven at 60, 70, 80, 90, and 100 ℃ for 3 and 7 days. Crosslink densities of the SBR vulcanizates were increased after the thermal aging and the level of the crosslink density change was also increased by increasing the aging temperature and time. The crosslink density change tended to reduce as the 1,2-unit content of SBR increased. The crosslink density changes of the silica-filled SBR vulcanizates without a silane coupling agent were larger than those of the SBR specimens with the filler systems of carbon black and silica containing a silane coupling agent. The experimental results were explained with the adsorption and desorption of curatives in the silica-filled samples and filler-polymer interactions of 1,2-unit. Activation energies for the crosslink density changes were calculated from the Arrhenius plots and compared in terms of the 1,2-unit contents and the filler systems.

Keywords

References

  1. M. R. Krejsa and J. L. Koenig, Rubber Chem. Technol., 66, 376 (1993)
  2. S. K. Chakraborty, A. K. Bhowmick, and S. K. De, J. Macromol. Sci.-Rev. Macromol. Chem., C21, 313 (1981-82)
  3. M. van Duin and A. Souphanthong, Rubber Chem. Technol., 68, 717 (1995)
  4. N. J. Morrison and M. Porter, Rubber Chem. Technol., 57, 63 (1984)
  5. C. H. Chen, J. L. Koenig, J. R. Shelton, and E. A. Collins, Rubber Chem. Technol., 54, 734 (1981)
  6. S.-S. Choi, Kor. Polym. J., 5, 39 (1997)
  7. S.-S. Choi, Bull. Kor. Chem. Soc., 21, 628 (2000)
  8. R. W. Layer, Rubber Chem. Technol., 65, 211 (1992)
  9. S.-S. Choi, Kor. Polym. J., 7, 108 (1999)
  10. S.-S. Choi, J. Appl. Polym. Sci., 75, 1378 (2000)
  11. S.-S. Choi, Polym. Int., 50, 107 (2001)
  12. S.-S. Choi, D.-H. Han, S.-W. Ko, and H. S. Lee, Bull. Kor. Chem. Soc., 26, 1853 (2005)
  13. S.-S. Choi, S.-H. Ha, and C.-S. Woo, Bull. Kor. Chem. Soc., 27, 429 (2006) https://doi.org/10.5012/bkcs.2006.27.3.429
  14. G. R. Cotton, Rubber Chem. Technol., 57, 118 (1984)
  15. S. Wolff and U. Gorl, Kautsch. Gummi Kunstst., 44, 941 (1991)
  16. T. C. Gruber and C. R. Herd, Rubber Chem. Technol., 70, 727 (1997)
  17. A. K. Ghosh and B. Adhikari, Kautsch. Gummi Kunstst., 52, 681 (1999)
  18. H. Raab, J. Frohlich, and D. Goritz, Kautsch. Gummi Kunstst., 53, 137 (2000)
  19. J. T. Byers, Rubber World, 218, 38 (1998)
  20. S. Wolff and M.-J. Wang, Rubber Chem. Technol., 65, 329 (1992)
  21. Y.-C. Ou, Z.-Z. Yu, A. Vidal, and J. B. Donnet, Rubber Chem. Technol., 67, 834 (1994)
  22. Y. Li, M. J. Wang, T. Zhang, F. Zhang, and X. Fu, Rubber Chem. Technol., 67, 693 (1994)
  23. U. Gorl and A. Hunsche, Proceedings of the Rubber Division 151st Meeting, American Chemical Society, Paper No. 38 (1994)
  24. A. S. Hashim, B. Azahari, Y. Ikeda, and S. Kohjiya, Rubber Chem. Technol., 71, 289 (1998) https://doi.org/10.5254/1.3538525
  25. S.-S. Choi, J. Anal. Appl. Pyrolysis, 55, 161 (2000)
  26. S.-S. Choi, J. Polym. Sci. Part B: Polym. Phys., 39, 439 (2001)
  27. S.-S. Choi and I.-S. Kim, Eur. Polym. J., 38, 1265 (2002)
  28. S.-S. Choi, I.-S. Kim, S. G. Lee, and C. W. Joo, J. Polym. Sci. Part B: Polym. Phys., 42, 577 (2004)
  29. J. H. Kim, K. C. Choi, and J. M. Yoon, JICE, 12, 608 (2006)