Study on the Synthsis of Tetramethyldisiloxane Derivatives Containing Silicone Hydride and Epoxy Functionalities at Each End

실리콘 하이드라이드 및 에폭시 관능기를 양 말단에 포함하는 테트라메틸디실록산 치환체의 합성에 관한 연구

  • Chung, Dae-Won (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Kang, Min Ha (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 정대원 (수원대학교 공과대학 신소재공학과) ;
  • 강민하 (수원대학교 공과대학 신소재공학과)
  • Received : 2007.01.09
  • Accepted : 2007.02.14
  • Published : 2007.04.10

Abstract

The synthesis of 1-[2-(3-{7-oxabicyclo[4.1.0]heptyl} 1,1,3,3-tetramethyl-disiloxane (Mono), which is a key intermediate for the synthesis of monomers applied for photopolymer systems based on the cationic ring opening polymerization, was studied. Mono was successfully synthesized by the hydrosilylation reaction of 4-vinyl-1-cyclohexene 1,2-epoxide (VCHO) with an excess amount of 1,1,3,3-tetramethyldisiloxane (TMDS) in the presence of a Speier catalyst. The structure and the purity of Mono were characterized by FT-IR, $^1H-NMR$, and $^{29}Si-NMR$. The optimum conditions for the hydrosilyation reaction were found to be 1:4 molar ratio of VCHO to TMDS and 5 ppm of the catalyst at the temperature of $55^{\circ}C$.

양이온 개환중합형 광고분자 시스템용 단량체의 합성에 핵심적인 중간체로 사용되는 1-[2-(3-{7-oxabicyclo[4.1.0] heptyl}1,1,3,3-tetramethyldisiloxane (Mono)의 합성방법의 최적화에 관하여 연구하였다. Speier 촉매의 존재 하에서, 4-vinyl-1-cyclohexene 1,2-epoxide (VCHO)를 과량의 1,1,3,3- tetramethyldisiloxane (TMDS)과 수소규소화 반응시켜 TMDS의 한쪽 실리콘 하이드라이드를 미반응 상태로 유지하고 나머지 한쪽만이 VCHO와 반응한 형태의 Mono를 합성할 수 있었으며, 생성된 Mono의 구조 및 순도는 FT-IR, $^1H-NMR$$^{29}Si-NMR$을 통하여 확인할 수 있었다. VCHO와 TMDS의 몰비를 1 : 4로 고정하고 촉매 함량 및 반응 온도를 변화시킨 결과, Speier 촉매 함량 5 ppm, 반응온도 $55^{\circ}C$가 Mono의 선택적 합성에 가장 최적인 반응조건으로 판단되었다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. D. H. Close, A. D. Jacobson, I. D. Margerum, R. G. Brault, and F. J. McClung, Appl. Phys. Lett., 14, 159 (1969) https://doi.org/10.1063/1.1652756
  2. S. Sugawara, K. Murase, and T. Kitayama, Appl. Opt., 14, 378 (1975) https://doi.org/10.1364/AO.14.000378
  3. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, Appl. Phys. Lett., 75, 1628 (1998) https://doi.org/10.1063/1.124949
  4. B. L. Booth, Appl. Opt., 14, 593 (1975) https://doi.org/10.1364/AO.14.000593
  5. V. Moreau, Y. Renotte, and Y. Lion, Proc. SPIE, 3951, 108 (1999)
  6. J. V. Crivello and Z. Mao, Chem. Mater., 9, 1554 (1997)
  7. J. V. Crivello and J. H. W. Lam, Macromolecules, 10, 1307 (1977) https://doi.org/10.1021/ma60060a028
  8. W. G. Kim, H. K. Ahn, H. W. Lee, S. H. Kim, and J. V. Crivello, Opt. Mater., 21, 343 (2002)
  9. J. V. Crivello and M. Jang, J. Photochem. Photobiol. Chem., 159, 173 (2003) https://doi.org/10.1016/S1010-6030(03)00182-5
  10. S. Blaya, P. Acebal, L. Carretero, and A. Fimia, Opt. Commun., 228, 55 (2003) https://doi.org/10.1016/j.optcom.2003.09.068
  11. U.S. Patent 6,784,300 (2004)
  12. U.S. Patent 5,759,721 (1998)
  13. D. W. Chung, J. P. Kim, D. Kim, and J. Lim, J. Ind. Eng. Chem., 12, 783 (2006)
  14. M. L. Vadala, M. Rutnakornpituk, M. A. Zalich, T. G. St Pierre, and J. S. Riffle, Polymer, 45, 7449 (2004) https://doi.org/10.1016/j.polymer.2004.09.001
  15. U.S. Patent 4,279,717 (1981)
  16. U.S. Patent 3,775,452 (1973)
  17. M. Rutnakornpituk, Eur. Polymer J., 41, 1043 (2005) https://doi.org/10.1016/j.eurpolymj.2004.11.013
  18. J. V. Crivello, D. Bi, and M. Fan, Pure Appl. Chem., A31, 1001 (1994)